Решебник по геометрии 8 класс Атанасян ФГОС Задание 693

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 693

Выбери издание
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
 
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{693}\mathbf{.}\mathbf{ОК\ ГДЗ - домашка\ на}\ 5}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[\mathrm{\Delta}ABC - прямоугольный;\]

\[прямоугольн;\]

\[\angle C = 90{^\circ};\]

\[\textbf{а)}\ AB = 26\ см;\]

\[r = 4\ см;\]

\[\textbf{б)}\ AD = 5\ см;\]

\[DB = 12\ см.\]

\[\mathbf{Найти:}\]

\[P_{\text{ABC}} - ?\]

\[\mathbf{Решение.}\]

\[\textbf{а)}\ 1)\ FOEC - четырехугольник;\ \]

\[\angle OFC = \angle FOE = \angle OEC =\]

\[= \angle ECF = 90{^\circ};\]

\[\ FO = OE.\]

\[Значит:\ \]

\[FOEC - квадрат \Longrightarrow\]

\[\Longrightarrow FC = CE = OE = FO = 4\ см.\]

\[2)\ AF = AD;\ \ BD = BE\ \]

\[(по\ теореме\ о\ касательных).\]

\[3)\ AB = AD + DB.\]

\[4)\ P_{\text{ABC}} = AB + BC + AC =\]

\[= AB + CE + EB + AF + FC;\]

\[P_{\text{ABC}} =\]

\[= AB + CE + FC + BD + AD =\]

\[= 26 + 4 + 4 + 4 + AB =\]

\[= 26 + 4 + 4 + 26 = 60\ см.\]

\[\textbf{б)}\ 1)\ AB = AD + DB = 5 + 12 =\]

\[= 17\ см.\]

\[2)\ По\ теореме\ о\ касательных\ к\ \]

\[окружности:\]

\[AF = AD = 5\ см;\ \]

\[BD = BE = 12\ см.\]

\[3)\ AC = AF + r = 5 + r;\ \ \ \]

\[BC = BE + r = 12 + r.\]

\[4)\ По\ теореме\ Пифагора:\]

\[(5 + r)^{2} + (12 + r)^{2} = 17^{2}\]

\[25 + 10r + r^{2} + 144 + 24r + r^{2} =\]

\[= 289\]

\[2r^{2} + 34r - 120 = 0\]

\[r^{2} + 17r - 60 = 0\]

\[По\ теореме\ Виета:\]

\[r_{1} + r_{2} = - 17;\ \ \ r_{1} \bullet r_{2} = - 60\ \]

\[r_{1} = 3;\ \ r_{2} = - 20.\ \]

\[Значит:\ \]

\[r = 3\ см.\]

\[5)\ AC = 5 + 3 = 8\ см;\]

\[BC = 12 + 3 = 15\ см.\]

\[5)\ P_{\text{ABC}} = AB + BC + AC =\]

\[= 17 + 15 + 8 = 40\ см.\]

\[Ответ:а)\ 60\ см;\ \]

\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ б)\ 40\ см.\ \]

Издание 2
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{693.еуроки - ответы\ на\ пятёрку}}\]

\[\mathbf{Дано:}\]

\[\mathbf{Построить}\mathbf{:}\]

\[\mathbf{треугольник\ по\ двум\ заданным\ }\]

\[\mathbf{углам\ и}\mathbf{\ }\mathbf{высоте,\ проведенной\ }\]

\[\mathbf{из\ третьего\ угла}\mathbf{.}\]

\[\mathbf{Построение.}\]

\[1)\ Строим\ продолжение\ сторон\ \]

\[большего\ угла,\ накладываем\ \]

\[второй\ угол\ на\ сторону\ \]

\[первого.\ Также\ строим\ \]

\[продолжение\ второй\ стороны.\]

\[2)\ Отмечаем\ на\ углах\ \]

\[точки\ \text{A\ }и\ B,\ а\ в\ месте\ \]

\[пересечения - точку\ \text{C.}\]

\[3)\ Через\ точку\ \text{B\ }проводим\ \]

\[перпендикуляр\ к\ прямой\ \text{AC.}\]

\[4)\ На\ прямой\ \text{AC\ }отмечаем\ \]

\[отрезок\ MH,\ равный\ высоте.\]

\[5)\ Через\ точку\ \text{M\ }проводим\ \]

\[прямые,\ параллельные\ \text{AB\ }и\ \]

\[\text{BC.}\]

\[6)\ На\ пересечении\ данных\ \]

\[прямых\ и\ \text{AC\ }отмечаем\ \]

\[точки\ \text{N\ }и\ \text{K.}\]

\[7)\ \mathrm{\Delta}MNK - искомый.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам