Решебник по геометрии 8 класс Атанасян ФГОС Задание 572

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 572

Выбери издание
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
 
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{572.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[Рисунок\ по\ условию\ задачи:\]

\[Дано:\ \]

\[\mathrm{\Delta}ABC - прямоугольный;\ \]

\[\angle C = 90{^\circ};\]

\[CH\bot AB.\]

\[Решение:\]

\[\textbf{а)}\ b_{c} = 25;a_{c} = 16:\]

\[1)\ h = \sqrt{a_{c} \bullet b_{c}} = \sqrt{25 \bullet 16} =\]

\[= 5 \bullet 4 = 20;\]

\[2)\ c = b_{c} + a_{c} = 25 + 16 = 41;\]

\[3)\ b = \sqrt{c \bullet b_{c}} = \sqrt{41 \bullet 25} =\]

\[= 5\sqrt{41};\]

\[4)\ a = \sqrt{c \bullet a_{c}} = \sqrt{41 \bullet 16} =\]

\[= 4\sqrt{41}.\]

\[Ответ:h = 20;a = 4\sqrt{41};\]

\[b = 5\sqrt{41}.\]

\[\textbf{б)}\ b_{c} = 36;a_{c} = 64:\]

\[1)\ h = \sqrt{a_{c} \bullet b_{c}} = \sqrt{64 \bullet 36} =\]

\[= 6 \bullet 8 = 48;\]

\[2)\ c = b_{c} + a_{c} = 36 + 64 = 100;\]

\[3)\ a = \sqrt{c \bullet a_{c}} = \sqrt{64 \bullet 100} =\]

\[= 8 \bullet 10 = 80;\]

\[4)\ b = \sqrt{c \bullet b_{c}} = \sqrt{36 \bullet 100} =\]

\[= 6 \bullet 10 = 60.\]

\[Ответ:h = 48;a = 80;b = 60.\]

\[\textbf{в)}\ b = 12;b_{c} = 6:\]

\[1)\ b^{2} = b_{c} \bullet c\]

\[c = \frac{b^{2}}{b_{c}} = \frac{144}{6} = 24;\]

\[2)\ c = b_{c} + a_{c}\]

\[a_{c} = c - b_{c} = 24 - 6 = 18;\]

\[3)\ a = \sqrt{a_{c} \bullet c} = \sqrt{18 \bullet 24} =\]

\[= \sqrt{6 \bullet 3 \bullet 6 \bullet 4} = 6 \bullet 2\sqrt{3} = 12\sqrt{3}.\]

\[Ответ:a = 12\sqrt{3};a_{c} = 18;\]

\[c = 24.\]

\[\textbf{г)}\ a = 8;a_{c} = 4:\]

\[1)\ a = \sqrt{a_{c} \bullet c} = >\]

\[= > c = \frac{a^{2}}{a_{c}} = \frac{64}{4} = 16;\]

\[2)\ c = b_{c} + a_{c}\]

\[b_{c} = c - a_{c} = 16 - 4 = 12;\]

\[3)\ b = \sqrt{b_{c} \bullet c} = \sqrt{12 \bullet 16} =\]

\[= 2 \bullet 4\sqrt{3} = 8\sqrt{3}.\]

\[Ответ:b = 8\sqrt{3};b_{c} = 12;c = 16.\]

\[\textbf{д)}\ a = 6;c = 9:\]

\[1)\ b = \sqrt{c^{2} - a^{2}} = \sqrt{81 - 36} =\]

\[= \sqrt{45} = 3\sqrt{5};\]

\[2)\ a = \sqrt{a_{c} \bullet c}\]

\[a_{c} = \frac{a^{2}}{c} = \frac{36}{9} = 4;\]

\[3)\ b = \sqrt{b_{c} \bullet c}\]

\[b_{c} = \frac{b^{2}}{c} = \frac{45}{9} = 5;\]

\[4)\ h = \sqrt{a_{c} \bullet b_{c}} = \sqrt{4 \bullet 5} = 2\sqrt{5}.\]

\[Ответ:h = 2\sqrt{5};b = 3\sqrt{5};\]

\[a_{c} = 4;b_{c} = 5.\ \]

Издание 2
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{572.еуроки - ответы\ на\ пятёрку}}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[\mathrm{\Delta}ABC;\]

\[BM - медиана.\]

\[\mathbf{Сравнить:}\]

\[S_{\text{ABM}}\ и\ S_{\text{MBC}}.\]

\[\mathbf{Решение.}\]

\[1)\ Проведем\ высоту\ BH:\]

\[BH - высота\ в\ \mathrm{\Delta}\text{MBC\ }\]

\[к\ стороне\ MC;\]

\[BH - высота\ в\ \mathrm{\Delta}\text{AMB\ }\]

\[к\ стороне\ \text{AM.}\]

\[2)\ S_{\text{ABM}} = \frac{1}{2} \bullet AM \bullet BH;\ \]

\[S_{\text{MBC}} = \frac{1}{2} \bullet MC \bullet BH.\]

\[AM = MC\ \]

\[(так\ как\ BM - медиана).\]

\[Следовательно:\]

\[S_{\text{ABM}} = S_{\text{MBC}}.\]

\[\mathbf{Ответ:\ }S_{\text{ABM}} = S_{\text{MBC}}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам