Решебник по геометрии 8 класс Атанасян ФГОС Задание 1061

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 1061

Выбери издание
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
 
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{1061.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[\textbf{а)}\ Дано:\]

\[AB = 5\ см;\]

\[AC = 7,5\ см;\ \]

\[\angle A = 135{^\circ}.\]

\[Найти:\]

\[BC;\ \]

\[\angle B\ и\ \angle C.\]

\[Решение.\]

\[1)\ По\ теореме\ косинусов:\]

\[BC^{2} =\]

\[= AB^{2} + AC^{2} - 2AB \bullet AC \bullet \cos{\angle A};\]

\[BC^{2} =\]

\[= 25 + 56,25 - 75\cos{135{^\circ}} =\]

\[= 81,25 + 75 \bullet 0,7071 =\]

\[= 134,2825;\]

\[BC = 11,59\ см.\]

\[2)\ AC^{2} =\]

\[= BC^{2} + AB^{2} - 2BC \bullet AB \bullet \cos{\angle B};\]

\[56,25 =\]

\[= 134,28 + 25 - 115,9 \bullet \cos{\angle B}\]

\[115,9\cos{\angle B} = 103,03\]

\[\cos{\angle B} = 0,88895\]

\[\angle B = 27{^\circ}15^{'}.\]

\[3)\ \angle C =\]

\[= 180{^\circ} - \left( 135{^\circ} + 27{^\circ}15^{'} \right) =\]

\[= 17{^\circ}45^{'}.\]

\[\textbf{б)}\ Дано:\]

\[AB = 2\sqrt{2}\ дм;\]

\[BC = 3\ дм;\ \]

\[\angle B = 45{^\circ}.\]

\[Найти:\]

\[AC;\ \]

\[\angle A\ и\ \angle C.\]

\[Решение.\]

\[1)\ По\ теореме\ косинусов:\]

\[AC^{2} =\]

\[= AB^{2} + BC^{2} - 2AB \bullet BC \bullet \cos{\angle B};\]

\[AC^{2} = 8 + 9 - 12\sqrt{2}\cos{45{^\circ}} =\]

\[= 17 - 12\sqrt{2} \bullet \frac{\sqrt{2}}{2} = 17 - 12 = 5;\]

\[AC = \sqrt{2}\ дм.\]

\[2)\ AB^{2} =\]

\[= AC^{2} + BC^{2} - 2AC \bullet BC \bullet \cos{\angle C};\]

\[8 = 5 + 9 - 6\sqrt{5} \bullet \cos{\angle C}\]

\[6\sqrt{5}\cos{\angle C} = 6\]

\[\cos{\angle C} = \frac{6}{6\sqrt{5}} = \frac{1}{\sqrt{5}} = 0,88895\]

\[\angle C = 63{^\circ}26^{'}.\]

\[3)\ \angle A = 180{^\circ} - \left( 63{^\circ}26^{'} + 45{^\circ} \right) =\]

\[= 71{^\circ}34^{'}.\]

\[\textbf{в)}\ Дано:\]

\[AC = 0,6\ м;\]

\[BC = \frac{\sqrt{3}}{4}\ дм;\ \]

\[\angle C = 150{^\circ}.\]

\[Найти:\]

\[AB;\ \]

\[\angle A\ и\ \angle B.\]

\[Решение.\]

\[1)\ AC = 0,6\ м = 6\ дм.\]

\[2)\ По\ теореме\ косинусов:\]

\[AB^{2} =\]

\[= AC^{2} + BC^{2} - 2AC \bullet BC \bullet \cos{\angle C};\]

\[AB^{2} =\]

\[= 36 + \frac{3}{16} - \frac{12\sqrt{3}}{4}\cos{150{^\circ}} =\]

\[= 36 + \frac{3}{16} - \frac{3\sqrt{3}}{2} = 40,96;\]

\[AB = 6,4\ дм.\]

\[3)\ AC^{2} =\]

\[= BC^{2} + AB^{2} - 2BC \bullet AB \bullet \cos{\angle B};\]

\[36 =\]

\[= \frac{3}{16} + 40,6875 - 2,64 \bullet \frac{\sqrt{3}}{4} \bullet \cos{\angle B}\]

\[4,875 = 5,5426 \bullet \cos{\angle B}\]

\[\cos{\angle B} = 0,8796\]

\[\angle B = 28{^\circ}24^{'}.\]

\[4)\ \angle A =\]

\[= 180{^\circ} - \left( 28{^\circ}24^{'} + 150{^\circ} \right) =\]

\(= 1{^\circ}36^{'}.\)

Издание 2
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{1061.еуроки - ответы\ на\ пятёрку}}\]

\[Рисунок\ по\ условию\mathbf{\ задачи:}\]

\[\mathbf{Дано:}\]

\[M(2;5);\]

\[l_{1} \parallel OX;\]

\[l_{2} \parallel OY;\]

\[M \in l_{1},l_{2}.\]

\[\mathbf{Найти:}\]

\[уравнения\ прямых\ \ l_{1}\ и\ l_{2}.\]

\[\mathbf{Решение.}\]

\[1)\ l_{1} \parallel OX\ и\ M \in l_{1}:\]

\[y = 5.\]

\[2)\ l_{2} \parallel OY\ и\ M \in l_{2}:\]

\[x = 2.\]

\[Ответ:\ y = 5;x = 2.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам