\[Схематический\ рисунок.\]
\[Дано:\]
\[AM - биссектриса\ \angle A;\]
\[CK - биссектриса\ \angle C;\]
\[AB = BC = b;\]
\[AC = a.\]
\[Найти:\]
\[\text{MK.}\]
\[Решение.\]
\[1)\ \mathrm{\Delta}ABC - \ равнобедренный:\]
\[\angle A = \angle C;\]
\[AM = CK.\]
\[AM - биссектриса\ \angle A:\]
\[\frac{\text{AB}}{\text{BM}} = \frac{\text{AC}}{\text{CM}};\]
\[\frac{b}{\text{BM}} = \frac{a}{\text{CM}}\]
\[CM = \frac{a}{b} \bullet BM;\]
\[BC = CM + BM;\]
\[b = \frac{a}{b} \bullet BM + BM\]
\[b^{2} = a \bullet BM + b \bullet BM\]
\[BM = \frac{b^{2}}{a + b}.\]
\[CK - биссектриса\ \angle C:\]
\[\frac{\text{AC}}{\text{AK}} = \frac{\text{BC}}{\text{BK}}\]
\[\frac{a}{\text{AK}} = \frac{b}{\text{BK}};\]
\[AK = \frac{a}{b} \bullet BK;\]
\[AB = AK + BK.\]
\[b = \frac{a}{b} \bullet BK + BK\]
\[b^{2} = a \bullet BK + b \bullet BK\]
\[BK = \frac{b^{2}}{a + b}.\]
\[2)\ \mathrm{\Delta}KBM\sim\mathrm{\Delta}ABC - второй\ \]
\[признак:\]
\[\frac{\text{BK}}{\text{AB}} = \frac{\text{BM}}{\text{BC}} = \frac{b}{a + b};\]
\[\angle ABC = \angle KBM.\]
\[Отсюда:\]
\[\frac{\text{MK}}{\text{AC}} = \frac{\text{BK}}{\text{AB}} = \frac{b}{a + b}\]
\[MK = AC \bullet \frac{b}{a + b} = \frac{\text{ab}}{a + b}.\]
\[Ответ:\ \ \frac{\text{ab}}{a + b}.\]