\[Схематический\ рисунок.\]
\[Дано:\]
\[\frac{\text{AD}}{\text{DB}} = \frac{\text{AE}}{\text{EC}} = \frac{3}{5};\]
\[BC = 16\ см.\]
\[Найти:\]
\[\text{DE.}\]
\[Решение.\]
\[\mathrm{\Delta}ADE\sim\mathrm{\Delta}ABC - второй\ признак:\]
\[AB = AD + BD;\]
\[AB = \frac{3}{5}BD + BD = \frac{8}{5}\text{BD.}\]
\[AC = AE + CE;\]
\[AC = \frac{3}{5}CE + CE = \frac{8}{5}\text{CE.}\]
\[\angle BAC = \angle DAE;\]
\[\frac{\text{AD}}{\text{AB}} = \frac{3}{8};\ \ \ \]
\[\frac{\text{AE}}{\text{AC}} = \frac{3}{8}.\]
\[Отсюда:\]
\[\frac{\text{DE}}{\text{BC}} = \frac{\text{AD}}{\text{AB}} = \frac{3}{8}\]
\[DE = \frac{3}{8}BC = 6\ см.\]
\[Ответ:\ \ 6\ см.\]