\[Схематический\ рисунок.\]
\[Дано:\]
\[MK \parallel BC;\]
\[AB = 6\ см;\]
\[AM = 4\ см;\]
\[MK = 8\ см;\]
\[AK = 9\ см.\]
\[Найти:\]
\[BC;\ AC.\]
\[Решение.\]
\[1)\ MK \parallel BC;\]
\[\mathrm{\Delta}AMK\sim\mathrm{\Delta}ABC.\]
\[2)\ \frac{\text{AK}}{\text{AC}} = \frac{\text{MK}}{\text{BC}} = \frac{\text{AM}}{\text{AB}} = \frac{2}{3}\]
\[BC = \frac{3}{2}MK = \frac{3}{2} \bullet 8 = 12\ см.\]
\[AC = \frac{3}{2}AK = \frac{3}{2} \bullet 9 = 13,5\ см.\]
\[Ответ:\ \ BC = 12\ см;\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ AC = 13,5\ см.\]