\[\boxed{\mathbf{991.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Дано:\]
\[M_{1}\left( x_{1};0 \right);\]
\[M_{2}\left( x_{2};0 \right).\]
\[Доказаь:\]
\[d = \left| x_{1} - x_{2} \right|.\]
\[Доказательство.\]
\[d = M_{1}M_{2} =\]
\[= \sqrt{\left( x_{1} - x_{2} \right)^{2} + (0 - 0)} =\]
\[= \sqrt{\left( x_{1} - x_{2} \right)^{2}} = \left| x_{1} - x_{2} \right|.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{991.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ \mathbf{задачи:}\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}MNP;\]
\[X \in MN;Y \in NP.\]
\[\frac{\text{MX}}{\text{XN}} = \frac{3}{2};\ \frac{\text{NY}}{\text{YP}} = \frac{3}{2};\]
\[\overrightarrow{a} = \overrightarrow{\text{NM}};\ \ \overrightarrow{b} = \overrightarrow{\text{NP}}.\]
\[Выразить:\]
\[\overrightarrow{\text{XY}}\ \ и\ \overrightarrow{\text{MP}}\ через\ \overrightarrow{a}\ и\ \overrightarrow{b}.\]
\[\mathbf{Решение.}\]
\[1)\ \frac{\text{MX}}{\text{XN}} = \frac{3}{2}:\]
\[\overrightarrow{\text{NM}} = 5\ частей;\]
\[\overrightarrow{\text{NX}} = \frac{2}{2}\overrightarrow{\text{NM}} = \frac{2}{5}\overrightarrow{a}.\]
\[2)\ \frac{\text{NY}}{\text{YP}} = \frac{3}{2}:\]
\[\overrightarrow{\text{NP}} = 5\ частей;\]
\[\overrightarrow{\text{NY}} = \frac{3}{5}\overrightarrow{\text{NP}} = \frac{3}{5}\overrightarrow{b}.\]
\[4)\ \overrightarrow{\text{XY}} = \overrightarrow{\text{XN}} + \overrightarrow{\text{NY}} =\]
\[= - \overrightarrow{\text{NX}} + \overrightarrow{\text{NY}} = - \frac{2}{5}\overrightarrow{a} + \frac{3}{5}\overrightarrow{b}.\]
\[4)\ \overrightarrow{\text{MP}} = \overrightarrow{\text{MN}} + \overrightarrow{\text{NP}} =\]
\[= - \overrightarrow{\text{NM}} + \overrightarrow{\text{NP}} = - \overrightarrow{a} + \overrightarrow{b}.\]
\[Ответ:\overrightarrow{\text{XY}} = - \frac{2}{5}\overrightarrow{a} + \frac{3}{5}\overrightarrow{b};\ \]
\[\ \overrightarrow{\text{MP}} = - \overrightarrow{a} + \overrightarrow{b}\text{.\ \ }\]