Решебник по геометрии 7 класс Атанасян ФГОС Задание 979

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 979

Выбери издание
Геометрия 7 класс Атанасян ФГОС Просвещение
 
фгос Геометрия 7 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 7 класс Атанасян ФГОС Просвещение

\[\boxed{\mathbf{979.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[\mathbf{Дано:}\]

\[A( - 8;6);\]

\[B( - 3; - 1);\]

\[M(5;y);\]

\[M \in AB.\]

\[\mathbf{Найти:}\]

\[\mathbf{Решение.}\]

\[1) - \left\{ \begin{matrix} - 6 - 8k + b \\ - 1 = - 3k + b \\ \end{matrix} \right.\ \Longrightarrow - 5 =\]

\[= - 5k \Longrightarrow k = 1;\]

\[\left\{ \begin{matrix} k = 1 \\ b = 2 \\ \end{matrix} \right.\ .\]

\[2)\ y = x + 2\]

\[y = 5 + 2 = 7\]

\[M(5;7).\]

\[Ответ:\ y = 7.\]

Издание 2
фгос Геометрия 7 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{979}\mathbf{.еуроки - ответы\ на\ пятёрку}}\]

\[Рисунок\ по\ условию\mathbf{\ задачи:}\]

\[\mathbf{Дано:}\]

\[ABCD - четырехугольник;\]

\[BN = NC;CF = FD;\ \]

\[BE = EA;AM = MD;\]

\[EF \cap NM = 0.\]

\[\mathbf{Доказать:}\]

\[NO = OM;\ \ \]

\[EO = OF.\]

\[\mathbf{Доказательство.}\]

\[1) - \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{MD}} + \overrightarrow{\text{DF}} =\]

\[= \overrightarrow{\text{EO}} + \overrightarrow{\text{OF}}\]

\[- \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{MO}} = \overrightarrow{\text{EO}}\]

\[- \overrightarrow{\text{EA}} + 2\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} = \overrightarrow{\text{EO}} + \overrightarrow{\text{OF}}\]

\[- \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{EO}} = \overrightarrow{\text{EO}}\text{.\ }\]

\[2) - \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EB}} + \overrightarrow{\text{BN}} =\]

\[= \overrightarrow{\text{MO}} + \overrightarrow{\text{ON}}\]

\[- \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EO}} = \overrightarrow{\text{MO}}\]

\[- \overrightarrow{\text{MA}} + 2\overrightarrow{\text{AE}} + \overrightarrow{\text{BN}} = \overrightarrow{\text{MO}} + \overrightarrow{\text{ON}}\]

\[- \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EO}} = \overrightarrow{\text{MO}}.\]

\[3)\ Выразим\ \overrightarrow{\text{EO}}\text{\ \ }и\ \ \ \overrightarrow{\text{MO}};\]

\[подставим:\]

\[- \overrightarrow{\text{EA}} + 2\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} =\]

\[= - \overrightarrow{\text{EA}} + \overrightarrow{\text{AM}} + \overrightarrow{\text{MO}} + \overrightarrow{\text{OF}}\]

\[- \overrightarrow{\text{MA}} + 2\overrightarrow{\text{AE}} + \overrightarrow{\text{BN}} =\]

\[= - \overrightarrow{\text{MA}} + \overrightarrow{\text{AE}} + \overrightarrow{\text{EO}} + \overrightarrow{\text{ON}}.\]

\[Получим:\]

\[\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} = \overrightarrow{\text{MO}} + \overrightarrow{\text{OF}}\]

\[\overrightarrow{\text{AE}} + \overrightarrow{\text{BN}} = \overrightarrow{\text{EO}} + \overrightarrow{\text{ON}}.\]

\[4)\ Запишем\ выражения:\]

\[2\overrightarrow{\text{AM}} + 2\overrightarrow{\text{DF}} = \overrightarrow{\text{AC}}\]

\[2\overrightarrow{\text{AE}} + 2\overrightarrow{\text{BN}} = \overrightarrow{\text{AC}}\]

\[Получим\ равенство:\]

\[\overrightarrow{\text{AM}} + \overrightarrow{\text{DF}} = \overrightarrow{\text{AE}} + \overrightarrow{\text{BN}}.\]

\[Следовательно:\]

\[\overrightarrow{\text{MO}} + \overrightarrow{\text{OF}} = \overrightarrow{\text{EO}} + \overrightarrow{\text{ON}}\]

\[\overrightarrow{\text{MO}} - \overrightarrow{\text{ON}} = \overrightarrow{\text{EO}} - \overrightarrow{\text{OF}}.\]

\[5)\ Так\ как\ \ \overrightarrow{\text{MO}} \nearrow \nearrow \overrightarrow{\text{ON}};\ \]

\[\overrightarrow{\text{EO}} \nearrow \nearrow \overrightarrow{\text{OF}};\]

\[\ EO;OF\ \ и\ \ MO;ON;\ \ \ \]

\[то\ не\ \ коллинеарные:\]

\[NO = OM;\ \ EO = OF.\]

\[\mathbf{Что\ и\ требовалось\ доказать.}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам