\[\boxed{\mathbf{970.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[Окружность\ (O;R);\]
\[A(1;3);\ \]
\[A \in (O;R);\]
\[R = 5;\]
\[O \in OX.\]
\[\mathbf{Написать:}\]
\[уравнение\ окружности.\]
\[\mathbf{Решение.}\]
\[1)\ Пусть\ точка\ O\ имеет\ \]
\[координаты\ (x;0):\]
\[R = OA = \ \]
\[= \sqrt{(1 - x)^{2} + (0 - 3)^{2}} =\]
\[= \sqrt{25} = 5\]
\[(1 - x)^{2} + 9 = 5\ \ и\ \ \ \]
\[(1 - x)^{2} = 16;\]
\[x_{1} = - 3\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }x_{2} = 5\]
\[3)\ O_{1}( - 3;0)\ и\ O_{2}(5;0) -\]
\[существуют\ две\ окружности:\]
\[(x - 5)^{2} + y^{2} = 25;\ \]
\[(x + 3)^{2} + y^{2} = 25.\]
\[Ответ:\ (x - 5)^{2} + y^{2} = 25\ и\ \]
\[(x + 3)^{2} + y^{2} = 25.\]
\[\boxed{\mathbf{970.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\mathbf{\ задачи:}\]
\[\mathbf{Дано:}\]
\[ABCD - параллелограмм;\]
\[AE = ED;\ \ \]
\[BE = GC.\]
\[\overrightarrow{\text{DC}} = \overrightarrow{a};\ \ \]
\[\overrightarrow{\text{BC}} = \overrightarrow{b}.\]
\[Выразить:\]
\[\overrightarrow{\text{EC}}\ \ \ и\ \ \ \overrightarrow{\text{AG}}.\]
\[\mathbf{Решение.}\]
\[1)\ По\ правилу\ треугольника:\]
\[\overrightarrow{\text{AG}} = \overrightarrow{\text{AB}} + \overrightarrow{\text{BG}} = \overrightarrow{\text{DC}} + \overrightarrow{\frac{\text{BC}}{2}} =\]
\[= \overrightarrow{a} + \frac{1}{2}\overrightarrow{b}.\]
\[2)\ По\ правилу\ треугольника:\]
\[\overrightarrow{\text{EC}} = \overrightarrow{\text{ED}} + \overrightarrow{\text{DC}} = \overrightarrow{\frac{\text{AD}}{2}} + \overrightarrow{\text{DC}} =\]
\[= \overrightarrow{\frac{\text{BC}}{2}} + \overrightarrow{\text{DC}} = \frac{1}{2}\overrightarrow{b} + \overrightarrow{a}.\]