\[\boxed{\mathbf{852.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}ABC;\ \ \]
\[\angle A = \frac{180{^\circ}}{7};\]
\[\angle B = \frac{360{^\circ}}{7}.\]
\[\mathbf{Доказать:}\]
\[\frac{1}{\text{BC}} = \frac{1}{\text{AC}} + \frac{1}{\text{AB}}.\]
\[\mathbf{Доказательство.}\]
\[1)\ \angle C =\]
\[= 180{^\circ} - \left( \frac{180{^\circ}}{7} + \frac{360{^\circ}}{7} \right) =\]
\[= \frac{720{^\circ}}{7} = 2\angle B = 4\angle A.\]
\[2)\ Проведем\ биссектрисы\ BD\ и\ \]
\[\text{CE},\ отметим\ точку\ их\ \]
\[пересечения\ M.\]
\[В\ треугольнике\ \text{ABD\ }углы\ при\ \]
\[основании\ будут\ равны:\]
\[\angle DAB = \angle DBA = \frac{180{^\circ}}{2}.\]
\[Получаем:\ \]
\[AD = BD;\ \ \]
\[\mathrm{\Delta}ABD - равнобедренный.\]
\[2)\ В\ \mathrm{\Delta}\text{BEC}\ углы\ при\ основании\ \]
\[равны:\ \]
\[\angle EBC = \angle ECB = \frac{360{^\circ}}{7} \Longrightarrow\]
\[\Longrightarrow \ EB = EC;\]
\[\mathrm{\Delta}BEC - равнобедренный.\]
\[3)\ \mathrm{\Delta}ABC\sim\mathrm{\Delta}\text{BDC} - по\ двум\ \]
\[углам:\]
\[\angle C - общий;\ \ \]
\[\angle CAB = \angle CBD = \frac{180}{7}.\]
\[Отсюда:\ \ \]
\[\frac{\text{AB}}{\text{BD}} = \frac{\text{AC}}{\text{BC}} = \frac{\text{BC}}{\text{CD}}\text{.\ }\]
\[AD = AB \bullet \frac{\text{BC}}{\text{AC}};\ \ \ \ \]
\[CD = \frac{BC^{2}}{\text{AC}};\]
\[AC = AD + CD =\]
\[= \frac{AB \bullet BC + BC^{2}}{\text{AC}};\]
\[AC^{2} = AB \bullet BC + BC^{2}.\]
\[4)\ \mathrm{\Delta}ABC\sim ACE\ \]
\[(см.рассуждение\ выше):\]
\[\frac{\text{AB}}{\text{AC}} = \frac{\text{BC}}{\text{CE}} = \frac{\text{AC}}{\text{AE}}\text{.\ \ \ \ \ }\]
\[Отсюда:\]
\[AE = \frac{AC^{2}}{\text{AB}};\ \ \ EB = \frac{AC \bullet BC}{\text{AB}};\ \ \]
\[AB = AE + EB = \frac{AC^{2} + AC \bullet BC}{\text{AB}};\]
\[AB^{2} = AC^{2} + AC \bullet BC.\]
\[4)\ AB \bullet BC = AC^{2} - BC^{2};\ \ \ \]
\[AC \bullet BC = AB^{2} - AC^{2};\]
\[(AB + AC) \bullet BC = AB^{2} - BC^{2};\]
\[AB + AC = \frac{AB^{2} - BC^{2}}{\text{BC}};\]
\[(AB + AC)(AB - AC) = AC \bullet BC;\]
\[AB + AC = \frac{AC \bullet BC}{AB - AC};\]
\[\frac{AB^{2} - BC^{2}}{\text{BC}} = \frac{AC \bullet BC}{AB - AC};\]
\[\frac{AC \bullet BC²}{AB - AC} = AB² - BC^{2};\]
\[BC^{2}\left( \frac{\text{AC}}{AB - AC} + 1 \right) = AB^{2};\]
\[BC^{2} = AB^{2}\frac{AB - AC}{\text{AB}} =\]
\[= AB^{2} - AB \bullet AC;\]
\[AB \bullet AC = AB^{2} - BC^{2} =\]
\[= (AB + AC) \bullet BC.\]
\[5)\ Следовательно:\]
\[BC = \frac{AB \bullet AC}{AB + AC}\]
\[\frac{1}{\text{BC}} = \frac{AB + AC}{AB \bullet BC} = \frac{1}{\text{AC}} + \frac{1}{\text{AB}}.\]
\[\mathbf{Что\ и\ требовалось\ доказать.}\]
\[\boxed{\mathbf{852.еуроки - ответы\ на\ пятёрку}}\]
\[\mathbf{Дано:}\]
\[ABCD - выпуклый\ \]
\[четырехугольник;\]
\[K \in AB;AK = KB;\]
\[M \in CD;CM = MD;\]
\[E = BM \cap KC;\]
\[F = AM \cap KD.\]
\[\mathbf{Доказать:}\]
\[S_{\text{KEMF}} = S_{\text{BCE}} + S_{\text{AFD}}.\]
\[\mathbf{Доказательство.}\]
\[Допустим:\]
\[AK = KB = a;\]
\[CM = MD = b.\]
\[2)\ Высота\ между\ сторонами\ \]
\[\text{AB\ }и\ CD\ растет\ линейно:\]
\[h_{2} - h_{1} = h_{3} - h_{2} = d.\]
\[= ah_{2} - ah_{2} + S_{\text{BCE}} + S_{\text{AFD}} =\]
\[= S_{\text{BCE}} + S_{\text{AFD}}.\]
\[S_{\text{KEMF}} = S_{\text{BCE}} + S_{\text{AFD}}.\]
\[\mathbf{Что\ и\ требовалось\ доказать.}\]