\[\boxed{\mathbf{631.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Дано:\]
\[d - расстояние\ от\ центра\ \]
\[окружности\ до\ прямой\ p;\]
\[r - радиус.\]
\[Определить:\]
\[взаимное\ расположение\ \text{p\ }и\ \]
\[окружности.\]
\[Решение.\]
\[\textbf{а)}\ r = 16\ см;d = 12\ см:\]
\[r > d \Longrightarrow прямая\ и\ окружность\ \]
\[пересекаются\ в\ двух\ точках.\]
\[\textbf{б)}\ r = 5\ см;d = 4,2\ см:\]
\[r > d \Longrightarrow прямая\ и\ окружность\ \]
\[пересекаются\ в\ двух\ точках.\]
\[\textbf{в)}\ r = 7,2\ дм;d = 3,7\ дм:\]
\[r > d \Longrightarrow прямая\ и\ окружность\ \]
\[пересекаются\ в\ двух\ точках.\]
\[\textbf{г)}\ r = 8\ см;d = 1,2\ дм = 12\ см:\]
\[r < d \Longrightarrow прямая\ и\ окружность\ \]
\[не\ пересекаются.\]
\[\textbf{д)}\ r = 5\ см;d = 50\ мм = 5\ см:\]
\[r = d \Longrightarrow прямая\ и\ окружность\ \]
\[касаются\ в\ одной\ точке.\]
\[\boxed{\mathbf{631.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[ABCD - ромб;\]
\[BH = \frac{4\sqrt{2}}{6}\ см;\]
\[\frac{2}{3}AC = \frac{4\sqrt{2}}{6}\ см.\]
\[\mathbf{Найти:}\]
\[S_{\text{ABCD}} - ?\]
\[\mathbf{Решение.}\]
\[1)\ \frac{2}{3}AC = \frac{4\sqrt{2}}{6}\]
\[AC = \frac{4\sqrt{2}}{6} \bullet \frac{3}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}.\]
\[2)\ S_{\text{ABCD}} = \frac{1}{2}BD \bullet AC =\]
\[= BH \bullet AD = \frac{2}{3}AC \bullet AD;\]
\[\frac{1}{2}BD = \frac{2}{3}\text{AD}\]
\[BD = \frac{4}{3}\text{AD}\]
\[\frac{\text{BD}}{2} = \frac{2}{3}\text{AD.}\]
\[3)\ \mathrm{\Delta}AOD - прямоугольный:\]
\[AD^{2} = AO^{2} + OD^{2} =\]
\[= \left( \frac{\sqrt{2}}{2} \right)^{2} + \left( \frac{2}{3}\text{AD} \right)^{2}\]
\[AD^{2} = \frac{2}{4} + \frac{4}{9}AD^{2}\]
\[AD^{2} - \frac{4}{9}AD^{2} = \frac{1}{2}\]
\[\frac{5}{9}AD^{2} = \frac{1}{2}\]
\[AD^{2} = \frac{9}{10}\]
\[AD = \frac{3}{\sqrt{10}}.\]
\[4)\ S_{\text{ABCD}} = \frac{4\sqrt{2}}{6} \bullet \frac{3}{\sqrt{10}} = \frac{2\sqrt{2}}{\sqrt{10}} =\]
\[= \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}\ см^{2}.\]
\[\mathbf{Ответ:}\frac{2\sqrt{5}}{5}\ см^{2}.\]