\[\boxed{\mathbf{582.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}ABC\sim\mathrm{\Delta}A_{1}B_{1}C_{1};\]
\[AC = 42\ м;\]
\[A_{1}C_{1} = 6,3\ см;\]
\[A_{1}B_{1} = 7,2\ см.\]
\[\mathbf{Найти:}\]
\[AB - ?\]
\[\mathbf{Решение.}\]
\[1)\ \mathrm{\Delta}ABC\ \sim\mathrm{\Delta}A_{1}B_{1}C_{1}\ \]
\[(по\ условию):\]
\[\frac{\text{AB}}{A_{1}B_{1}} = \frac{\text{BC}}{B_{1}C_{1}} = \frac{\text{AC}}{A_{1}C_{1}} = k.\]
\[2)\ \frac{\text{AB}}{7,2} = \frac{4200}{6,3}\]
\[AB = \frac{4200 \bullet 7,2}{6,3} = 4800\ см.\]
\[AB = 4800\ :100 = 48\ м.\]
\(Ответ:AB = 48\ м.\)
\[\boxed{\mathbf{582.еуроки - ответы\ на\ пятёрку}}\]
\[\textbf{а)}\ a = 12;c = 13:\]
\[b^{2} = 169 - 144 = 25\]
\[b = 5.\]
\[\textbf{б)}\ a = 7;c = 9:\]
\[b^{2} = 81 - 49 = 32\]
\[b = \sqrt{32} = 4\sqrt{2}.\]
\[\textbf{в)}\ a = 12;c = 2b:\]
\[b^{2} = 4b^{2} - 144\]
\[3b^{2} = 144\]
\[b^{2} = 48\]
\[b = 4\sqrt{3}.\]
\[\textbf{г)}\ a = 2\sqrt{3};c = 2b:\]
\[b^{2} = 4b^{2} - 12\]
\[3b^{2} = 12\]
\[b^{2} = 4\]
\[b = 2.\]
\[\textbf{д)}\ a = 3b;c = 2\sqrt{10}:\]
\[b^{2} = 40 - 9b^{2}\]
\[10b^{2} = 40\]
\[b^{2} = 4\]
\[b = 2.\]