\[\boxed{\mathbf{579}\mathbf{.}\mathbf{ОК}\mathbf{\ }\mathbf{ГДЗ}\mathbf{-}\mathbf{домашка}\mathbf{\ }\mathbf{на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[BC_{1} = 6,3\ м;\]
\[BC = 3,4\ м;\]
\[AC = 1,7\ м.\]
\[\mathbf{Найти:}\]
\[A_{1}C_{1} - ?\]
\[\mathbf{Решение.}\]
\[1)\ \mathrm{\Delta}ABC\sim\mathrm{\Delta}A_{1}C_{1}\text{B\ }\]
\[(по\ двум\ углам):\]
\[\angle C = \angle C_{1} = 90{^\circ}\ (по\ условию);\ \]
\[\angle B - общий.\]
\[Отсюда:\]
\[\frac{\text{AB}}{A_{1}B} = \frac{\text{BC}}{BC_{1}} = \frac{\text{AC}}{A_{1}C_{1}} = k.\]
\[2)\ \frac{\text{BC}}{BC_{1}} = k \Longrightarrow \frac{3,4}{6,3} = k.\]
\[3)\ \frac{1,7}{A_{1}C_{1}} = \frac{3,4}{6,3}\]
\[A_{1}C_{1} = \frac{1,7 \bullet 6,3}{3,4} = \frac{6,3}{2} = 3,15\ м.\]
\[\mathbf{Ответ:}высота\ столба\ \]
\[3,15\ метров\mathbf{.}\]
\[\boxed{\mathbf{579.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[ABCD - прямоугольная\ \]
\[трапеция;\]
\[BC\bot AB;\]
\[BC = 6\ см;\]
\[AB = 6\ см;\]
\[\angle C = 135{^\circ}.\]
\[\mathbf{Найти:}\]
\[S_{\text{ABCD}} - ?\]
\[\mathbf{Решение.}\]
\[1)\ Проведем\ из\ точки\ C\ \]
\[перпендикуляр\ к\ AD:\]
\[AD \cap CH = H;\ \ \ CH - высота.\]
\[\angle HCD = 135{^\circ} - 90{^\circ} = 45{^\circ}.\]
\[3)\ ⊿CHD - равнобедренный:\]
\[\angle D = \angle HCD = 45{^\circ};\]
\[CH = HD = 6\ см.\]
\[4)\ ABCH - квадрат:\]
\[AB\bot BC;\ \]
\[AB = BC.\]
\[5)\ S_{\text{ABCD}} = \frac{1}{2}(BC + AD) \bullet CH =\]
\[= \frac{1}{2}(6 + 12) = 54\ см^{2}.\]
\(\mathbf{Ответ}:54\mathbf{\ с}\mathbf{м}^{\mathbf{2}}\mathbf{.}\)