\[\boxed{\mathbf{51.}\mathbf{ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Обозначим\ биссектрисы\ углов\ \]
\[\text{AOB\ }и\ \text{COD\ }лучами\ \text{OE\ }и\ \text{OF\ }\]
\(соответственно\).
\[Рисунок\ по\ условию\ задачи.\]
\[\mathbf{Дано:}\]
\[\angle AOD = 90{^\circ}\]
\[\angle AOB = \angle BOC = \angle COD\]
\[\mathbf{Найти:}\]
\[\angle EOF - ?\]
\[\mathbf{Решение.}\]
\[Углы\ AOB,\ BOC,\ COD\ равны:\]
\[\angle AOB = \angle BOC = \angle COD =\]
\[= \frac{\angle AOD}{3} = \frac{90{^\circ}}{3} = 30{^\circ}.\]
\[\angle EOF = \angle EOB + \angle BOC + \angle COF.\]
\[Биссектриса\ является\ лучом,\ \]
\[разделяющим\ угол\ на\ две\ \]
\[равные\ части,\ так\ как\ углы\ \]
\[\text{AOB\ }и\ \text{COD\ }равны,\ то\ их\ \]
\[биссектрисы\ также\ будут\ \]
\[равны:\]
\[\angle COF = \angle EOB = \frac{1}{2}\angle AOB =\]
\[= \frac{30{^\circ}}{2} = 15{^\circ}.\]
\[\angle EOF = 15 + 30 + 15 = 60{^\circ}.\]
\[Ответ:60{^\circ}.\]
\[\boxed{\mathbf{51.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[Дано:\]
\[\textbf{а)}\ \angle AOE = 44{^\circ}\]
\[\text{\ \ \ \ \ }\angle EOB = 77{^\circ}\]
\[\textbf{б)}\ \angle AOE = 12{^\circ}37'\]
\(\ \angle EOB = 108{^\circ}25^{'}\)
\[Найти:\]
\[\angle AOB - ?\]
\[Решение.\]
\[По\ условию\ задачи\ луч\ \text{OE\ }\]
\[делит\ угол\ \text{BOA\ }на\ две\ части:\]
\[\ \angle AOB = \angle EOA + \angle EOB.\]
\[\textbf{а)}\ \angle AOB = 44{^\circ} + 77{^\circ} = 121{^\circ}.\]
\[\textbf{б)}\ \angle AOB = {12{^\circ}37}^{'} + {108{^\circ}25}^{'} =\]
\[= 120{^\circ}62^{'} = 121{^\circ}2^{'}.\]
\[Ответ:а)121{^\circ};\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ б)121{^\circ}2^{'}.\]