\[\boxed{\mathbf{374.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[ABCD - параллелограмм;\]
\[\text{BK} = 15\ см;\]
\[KC = 9\ см;\]
\[AK - биссектриса\ \angle A;\]
\[K \in BC.\]
\[\mathbf{Найти:}\]
\[AB\ и\ СD;CB\ и\ \text{AD.}\]
\[\mathbf{Решение.}\]
\[1)\ AK - биссектриса\ \angle A:\]
\[\angle BAK = \angle KAD.\]
\[2)\ \angle BKA =\]
\[= \angle KAD\ (как\ накрестлежащие).\]
\[3)\ \angle BAK = \angle KAD:\]
\[\mathrm{\Delta}ABK - равнобедренный.\]
\[Значит:\]
\[AB = BK = 15\ см.\]
\[4)\ BC = BK + KC =\]
\[= 15\ см + 9\ см = 24\ см.\]
\[5)\ ABCD - параллелограмм:\]
\[BC = AD = 24\ см;\]
\[AB = CD = 15\ см.\]
\[Ответ:BC = AD = 24\ см;\ \ \]
\[AB = CD = 15\ см.\]
\[\boxed{\mathbf{374.еуроки - ответы\ на\ пятёрку}}\]
\[AB = A^{'}B^{'}\]
\[AC = A^{'}C^{'}\]
\[BC = B'C'\]