\[\boxed{\mathbf{228}\mathbf{.}\mathbf{ОК}\mathbf{\ }\mathbf{ГДЗ}\mathbf{-}\mathbf{домашка}\mathbf{\ }\mathbf{на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано}\mathbf{:}\]
\[\mathrm{\Delta}ABC - равнобедренный;\]
\[AB = BC;\]
\[\textbf{а)}\ \angle A = 40{^\circ};\]
\[\textbf{б)}\ \angle A = 60{^\circ};\]
\[\textbf{в)}\ \angle B = 100{^\circ}.\]
\[\mathbf{Найти:}\]
\[\angle A - ?;\angle B - ?;\angle C - ?\]
\[\mathbf{Решение.}\]
\[\textbf{а)}\]
\[1)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[\angle A = \angle C = 40{^\circ}.\]
\[2)\ По\ теореме\ о\ сумме\ углов\ \]
\[в\ треугольнике:\text{\ \ }\]
\[\angle A + \angle B + \angle C = 180{^\circ}\ \ \]
\[\angle B = 180{^\circ} - (40{^\circ} + 40{^\circ}) = 100{^\circ}.\]
\[\textbf{б)}\ \]
\[1)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[\angle A = \angle C = 60{^\circ}.\]
\[2)\ По\ теореме\ о\ сумме\ углов\ \]
\[в\ треугольнике:\ \]
\[\angle A + \angle B + \angle C = 180{^\circ}\ \]
\[\angle B = 180{^\circ} - (60{^\circ} + 60{^\circ}) = 60{^\circ}.\]
\[\textbf{в)}\ \]
\[1)\ \mathrm{\Delta}ABC - равнобедренный:\]
\[\angle A = \angle C.\]
\[2)\ По\ теореме\ о\ сумме\ углов\ \]
\[в\ треугольнике:\ \]
\[\angle A + \angle B + \angle C = 180{^\circ}\]
\[\angle A + \angle C = 180{^\circ} - 100{^\circ} = 80{^\circ}\]
\[2\angle A = 80{^\circ}\]
\[\angle A = \angle C = \frac{80{^\circ}}{2} = 40{^\circ}.\]
\[Ответ:\ \]
\[\textbf{а)}\ \angle A = \angle C = 40{^\circ};\ \angle B = 100{^\circ};\]
\[\textbf{б)}\ \angle A = \angle C = \angle B = 60{^\circ};\]
\[\textbf{в)}\ \angle A = \angle C = 40{^\circ};\ \angle B = 100{^\circ}.\]
\[\boxed{\mathbf{228.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[Дано:\ \]
\[\mathrm{\Delta}\text{ABC.}\]
\[Найти:\ \]
\[\angle C - ?\]
\[Решение.\]
\[По\ теореме\ о\ сумме\ углов\ \]
\[в\ треугольнике:\]
\[\angle A + \angle B + \angle C = 180{^\circ}\ .\]
\[\textbf{а)}\ \angle A = 65{^\circ};\ \angle B = 57{^\circ}:\]
\[\angle C = 180{^\circ} - \angle A - \angle B =\]
\[= 180{^\circ} - 65{^\circ} - 57{^\circ} =\]
\[= 180{^\circ} - 122{^\circ} = 58{^\circ}.\]
\[\textbf{б)}\ \angle A = 24{^\circ};\ \angle B = 130{^\circ}:\]
\[\angle C = 180{^\circ} - \angle A - \angle B =\]
\[= 180{^\circ} - 24{^\circ} - 130{^\circ} =\]
\[= 180{^\circ} - 157{^\circ} = 26{^\circ}.\]
\[\textbf{в)}\ \angle A = \alpha;\ \angle B = 2\alpha:\]
\[\angle C = 180{^\circ} - \angle A - \angle B =\]
\[= 180{^\circ} - \alpha - 2\alpha = 180{^\circ} - 3\alpha.\]
\[\textbf{г)}\ \angle A = 60{^\circ} + \alpha;\ \angle B = 60{^\circ} - \alpha:\]
\[\angle C = 180{^\circ} - \angle A - \angle B =\]
\[= 180{^\circ} - 60{^\circ} - \alpha - 60{^\circ} + \alpha =\]
\[= 180{^\circ} - 120{^\circ} = 60{^\circ}.\]
\[Ответ:а)\ 58{^\circ};б)\ 26{^\circ};\]
\[\textbf{в)}\ 180{^\circ} - 3\alpha;г)\ 60{^\circ}.\]