\[\boxed{\mathbf{128.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\mathbf{\ задачи:}\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}ABC = \mathrm{\Delta}A_{1}B_{1}C_{1};\]
\[\text{AM\ }и\ A_{1}M_{1} - биссектрисы.\]
\[\mathbf{Доказать:}\]
\[AM = A_{1}M_{1}.\]
\[\mathbf{Доказательство.}\]
\[1)\ \mathrm{\Delta}ABM = \mathrm{\Delta}A_{1}B_{1}M_{1} - по\ \]
\[стороне\ и\ двум\ прилегающим\ \]
\[к\ ней\ углам:\]
\[AB = A_{1}B_{1}\ \]
\[\left( по\ условию:\ \mathrm{\Delta}ABC = \mathrm{\Delta}A_{1}B_{1}C_{1} \right);\]
\[\angle B = \angle B_{1}\ (по\ условию);\]
\[\angle BAM = \angle B_{1}A_{1}M_{1}\ \left( \ \angle A = \angle A_{1} \right).\]
\[2)\ Соответствующие\ элементы\ \]
\[равных\ фигур\ равны:\]
\[AM = A_{1}M_{1}.\]
\[\mathbf{Что\ и\ требовалось\ доказать.}\]
\[\boxed{\mathbf{128.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\mathbf{\ задачи:}\]
\[\mathbf{Дано:}\]
\[\angle A;\ \]
\[\ AD - биссектриса;\]
\[\angle ADB = \angle ADC.\]
\[\mathbf{Доказать:}\]
\[BD = CD.\]
\[\mathbf{Доказательство.}\]
\[1)\ \mathrm{\Delta}ABD = \mathrm{\Delta}ACD - по\ стороне\ \]
\[и\ двум\ прилежащим\ к\ ней\ \]
\[углам:\]
\[AD - общая\ сторона;\]
\[\angle BDA = \angle CDA\ (по\ условию).\]
\[2)\ Так\ как\ равные\ элементы\ \]
\[в\ равных\ фигурах\ равны:\]
\[BD = DC.\]
\[\mathbf{Что\ и\ требовалось\ доказать.}\]