\[\boxed{\mathbf{1106.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[S = 989\ м;\]
\[n = 500\ об.\]
\[\mathbf{Найти:}\]
\[d - колеса.\]
\[\mathbf{Решение.}\]
\[1)\ C - длина\ окружности\ \]
\[колеса:\]
\[S = n \bullet C\]
\[C = \frac{S}{n}\]
\[C = \frac{989}{500} = 1,978\ метров.\]
\[2)\ C = 2\pi R \Longrightarrow R = \frac{C}{2\pi}:\]
\[R = \frac{1,978}{2 \bullet 3,14} = 0,315\ м;\]
\[d = 2R = 2 \bullet 0,315 = 0,63\ м.\]
\[\mathbf{Ответ:}0,63\ метра.\]
\[\boxed{\mathbf{1106.еуроки - ответы\ на\ пятёрку}}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\textbf{а)}\ A(2;2);\]
\[\textbf{б)}\ A(0;3);\]
\[\textbf{в)}\ A( - \sqrt{3};1);\]
\[\textbf{г)}\ A\left( - 2\sqrt{2};2\sqrt{2} \right).\]
\[\mathbf{Найти:}\]
\[\angle\alpha - ?\]
\[\mathbf{Решение.}\]
\[\textbf{а)}\ OA^{2} = 4 + 4 = 8 \Longrightarrow\]
\[\Longrightarrow OA = 2\sqrt{2}.\]
\[\left\{ \begin{matrix} 2 = 2\sqrt{2} \bullet \cos\alpha \\ 2 = 2\sqrt{2} \bullet \sin\alpha \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} \cos\alpha = \frac{\sqrt{2}}{2} \\ \sin\alpha = \frac{\sqrt{2}}{2} \\ \end{matrix} \right.\ \Longrightarrow \alpha = 45{^\circ}.\]
\[\textbf{б)}\ OA^{2} = 0 + 9 = 9 \Longrightarrow OA = 3.\]
\[\left\{ \begin{matrix} 0 = 3 \bullet \cos\alpha \\ 3 = 3 \bullet \sin\alpha \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} \cos\alpha = 0 \\ \sin\alpha = 1 \\ \end{matrix} \right.\ \Longrightarrow \alpha = 90{^\circ}.\]
\[\textbf{в)}\ OA^{2} = 3 + 1 = 4 \Longrightarrow OA = 2.\]
\[\left\{ \begin{matrix} - \sqrt{3} = 2 \bullet \cos\alpha \\ 1 = 2 \bullet \sin\alpha\text{\ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} \cos\alpha = - \frac{\sqrt{3}}{2} \\ \sin\alpha = \frac{1}{2}\text{\ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \Longrightarrow \alpha = 150{^\circ}.\]
\[\textbf{г)}\ OA^{2} = 8 + 8 = 16 \Longrightarrow OA = 4.\]
\[\left\{ \begin{matrix} - 2\sqrt{2} = 4 \bullet \cos\alpha \\ 2\sqrt{2} = 4 \bullet \sin\alpha\text{\ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} \cos\alpha = - \frac{\sqrt{2}}{2} \\ \sin\alpha = \frac{\sqrt{2}}{2}\text{\ \ \ \ \ } \\ \end{matrix} \right.\ \Longrightarrow \alpha = 135{^\circ}.\]
\[Ответ:а)\ 45{^\circ};\ б)\ 90{^\circ};\ \]
\[\textbf{в)}\ 150{^\circ};г)\ 135{^\circ}.\]