\[\boxed{\mathbf{1062.ОК\ ГДЗ - домашка\ на}\ 5}\]
\[Рисунок\ по\ условию\ задачи:\]
\[\mathbf{Дано:}\]
\[\mathrm{\Delta}DEF;\]
\[DE = 4,5\ дм;\]
\[EF = 9,9\ дм;\]
\[DF = 70\ см.\]
\[\mathbf{Найти:}\]
\[\angle D;\angle E\ и\ \angle F.\]
\[\mathbf{Решение.}\]
\[1)\ DE = 4,5\ дм = 45\ см;\]
\[EF = 9,9\ дм = 99\ см.\]
\[2)\ По\ теореме\ косинусов:\]
\[EF^{2} =\]
\[= DE^{2} + DF^{2} - 2DE \bullet DF \bullet \cos{\angle D};\]
\[9801 =\]
\[= 2025 + 4900 - 6300 \bullet \cos{\angle D}\]
\[2876 = - 6300\cos{\angle D}\]
\[\cos{\angle D} = - 0,4565\]
\[\angle D = 117{^\circ}10^{'}.\]
\[3)\ По\ теореме\ синусов:\]
\[\frac{\text{DE}}{\sin{\angle F}} = \frac{\text{EF}}{\sin{\angle D}} = \frac{\text{DF}}{\sin{\angle E}};\]
\[\frac{99}{\sin{117{^\circ}10^{'}}} = \frac{45}{\sin{\angle F}}\]
\[\sin{\angle F} = \frac{45 \bullet 0,8897}{99} = 0,4044\]
\[\angle F = 23{^\circ}51^{'}.\]
\[4)\ \angle E =\]
\[= 180{^\circ} - \left( 23{^\circ}51^{'} + 117{^\circ}10^{'} \right) =\]
\[= 38{^\circ}59^{'}.\]
\[Ответ:\ \angle D = 117{^\circ}10^{'};\ \]
\[\angle E = 38{^\circ}59^{'};\ \angle F = 23{^\circ}51'.\]
\[\boxed{\mathbf{1062.еуроки - ответы\ на\ пятёрку}}\]
\[\mathbf{а})\ y = 3;\]
\[\textbf{б)}\ x = - 2;\]
\[\textbf{в)}\ y = - 4;\]
\[\textbf{г)}\ x = 7.\]