\[\mathbf{Схематический\ рисунок.}\]
\[Дано:\ \ \]
\[AM - медиана\ \mathrm{\Delta}ABC;\]
\[A_{1}M_{1} - медиана\ \mathrm{\Delta}A_{1}B_{1}C_{1};\]
\[AM = A_{1}M_{1};\]
\[\angle BAM = \angle B_{1}A_{1}M_{1};\]
\[\angle MAC = \angle M_{1}A_{1}C_{1}.\]
\[Доказать:\]
\[\mathrm{\Delta}ABC = \mathrm{\Delta}A_{1}B_{1}C_{1}.\]
\[\mathbf{Доказательство.}\]
\[1)\ Отложим\ отрезки\ на\ \]
\[прямых\ \text{AM\ }и\ A_{1}M_{1}\ :\]
\[MD = AM;\ \ \ \]
\[M_{1}D_{1} = A_{1}M_{1}.\]
\[2)\ \mathrm{\Delta}AMC = \mathrm{\Delta}DMB - по\ первому\ \]
\[признаку:\]
\[MC = MB = \frac{1}{2}BC;\]
\[\angle AMC = \angle DMB - вертикальные.\]
\[Отсюда:\]
\[AC = BD;\ \ \ \]
\[\angle MAC = \angle MDB.\]
\[3)\ Аналогично:\]
\[A_{1}C_{1} = B_{1}D_{1};\ \ \ \]
\[\angle M_{1}A_{1}C_{1} = \angle M_{1}D_{1}B_{1}.\]
\[4)\ \mathrm{\Delta}ABD = \mathrm{\Delta}A_{1}B_{1}D_{1} - по\ второму\ \]
\[признаку:\]
\[AD = 2AM = 2A_{1}M_{1} = A_{1}D_{1};\]
\[\angle B_{1}D_{1}A_{1} = \angle B_{1}A_{1}D_{1} =\]
\[= \angle BAD = \angle BDA.\]
\[Отсюда:\]
\[AB = A_{1}B_{1};\ \ \ \]
\[BD = B_{1}D_{1}.\]
\[5)\ \mathrm{\Delta}ABC = \mathrm{\Delta}A_{1}B_{1}C_{1} - по\ первому\ \]
\[признаку:\]
\[AC = BD = B_{1}D_{1} = A_{1}C_{1};\ \ \ \]
\[\angle BAC = \angle B_{1}A_{1}C_{1}.\]
\[Что\ и\ требовалось\ доказать.\]