\[\boxed{\mathbf{Задание\ 3.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[\boxed{\mathbf{1.}}\]
\[S = \frac{1}{2} \cdot 4 \cdot 5 = 10\ см^{2}\text{.\ }\]
\[Ответ:10\ см^{2}.\]
\[\boxed{\mathbf{2.}}\]
\[Достроим\ треугольник\ до\ \]
\[прямоугольного:\]
\[Получим:\]
\[S = \frac{1}{2} \cdot 4 \cdot 4 - \frac{1}{2} \cdot 4 \cdot 1 = 8 - 2 =\]
\[= 6\ см^{2}.\]
\[Ответ:6\ см^{2}.\]
\[\boxed{\mathbf{3.}}\]
\[Достроим\ треугольник\ до\ \]
\[прямоугольника:\]
\[Получим:\]
\[S =\]
\[= 6 \cdot 4 - \frac{1}{2} \cdot 4 \cdot 2 - \frac{1}{2} \cdot 4 \cdot 2 - \frac{1}{2} \cdot 6 \cdot 2 =\]
\[= 24 - 4 - 4 - 6 = 10\ см^{2}.\]
\[Ответ:10\ см^{2}.\]
\[\boxed{\mathbf{4.}}\]
\[Достроим:\]
\[Получим:\]
\[Ответ:5,5\ см^{2}.\]
\[\boxed{\mathbf{5.}}\]
\[Разобьем\ на\ две\ фигуры:\]
\[Получим:\]
\[S = \frac{1}{2} \cdot 2 \cdot 3 + 3 \cdot 3 = 3 + 9 =\]
\[= 12\ см^{2}.\]
\[Ответ:12\ см^{2}.\]
\[\boxed{\mathbf{6.}}\]
\[Разобьем\ на\ три\ фигуры:\]
\[S = \frac{1}{2} \cdot 3 \cdot 1 + 2 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 3 =\]
\[= 6 + 1,5 + 4,5 = 12\ см^{2}.\]
\[Ответ:12\ см^{2}.\]
\[\boxed{\mathbf{7.}}\]
\[Разобьем\ на\ три\ фигуры:\]
\[S = \frac{1}{2} \cdot 4 \cdot 1 + 4 \cdot 2 + \frac{1}{2} \cdot 2 \cdot 4 =\]
\[= 2 + 8 + 4 = 14\ см^{2}.\]
\[Ответ:14\ см^{2}.\]
\[\boxed{\mathbf{8.}}\]
\[Дополним:\]
\[Ответ:10\ см^{2}.\]
\[\boxed{\mathbf{9.}}\]
\[Дополним:\]
\[S = 4 \cdot 4 - 4 \cdot \frac{1}{2} \cdot 3 \cdot 1 =\]
\[= 16 - 6 = 10\ см^{2}.\]
\[Ответ:10\ см^{2}.\]
\[\boxed{\mathbf{10.}}\]
\[\angle AOB = 90{^\circ}:\]
\[\cup ACB = 360{^\circ} - 90{^\circ} = 270{^\circ}.\]
\[S = \frac{270{^\circ}}{360{^\circ}} \cdot S_{кр} = \frac{3}{4}\pi R^{2}.\]
\[R = OC = 4\ см.\]
\[\frac{S}{\pi} = \frac{3}{4}R^{2} = \frac{3}{4} \cdot 4^{2} = 12\ см^{2}.\]
\[Ответ:12\ см^{2}.\]
\[\boxed{\mathbf{11.}}\]
\[S = a^{2} = 2\]
\[a = \sqrt{2}:\]
\[d = \sqrt{\left( \sqrt{2} \right)^{2} + \left( \sqrt{2} \right)^{2}} = \sqrt{2 + 2} =\]
\[= 2.\]
\[Ответ:диагональ\ равна\ 2.\]
\[\boxed{\mathbf{12.}}\]
\[a = 8;\ \ b = 12;\ \ \]
\[\angle(a;b) = 150{^\circ}.\]
\[S = \frac{1}{2}ab \cdot \sin{150{^\circ}} =\]
\[= \frac{1}{2} \cdot 8 \cdot 12 \cdot \sin{30{^\circ}} = 48 \cdot \frac{1}{2} =\]
\[= 24.\]
\[Ответ:24.\]
\[\boxed{\mathbf{13.}}\]
\[a = 6;\ \ b = 8;\]
\[\angle(a;b) = 30{^\circ}.\]
\[S = a \cdot b \cdot \sin{30{^\circ}} = 6 \cdot 8 \cdot \frac{1}{2} =\]
\[= 24.\]
\[Ответ:24.\]
\[\boxed{\mathbf{14.}}\]
\[S = 12;\ \ a = 6.\]
\[S = \frac{1}{2}a \cdot b = 12\]
\[\frac{1}{2} \cdot 6 \cdot b = 12\]
\[b = 12\ :3\]
\[b = 4.\]
\[Ответ:второй\ катет\ равен\ 4.\]
\[\boxed{\mathbf{15.}}\]
\[a = 3;\ \ b = 1;\ \ h = 1:\]
\[S = \frac{a + b}{2} \cdot h = \frac{3 + 1}{2} \cdot 1 = 2.\]
\[Ответ:2.\]
\[\boxed{\mathbf{16.}}\]
\[P_{1}\ :P_{2} = 3\ :5\]
\[S_{1} = 36.\]
\[Отношение\ периметров:\]
\[k = \frac{3}{5}.\]
\[Отношение\ площадей:\]
\[\frac{S_{1}}{S_{2}} = k^{2} = \frac{9}{25};\]
\[S_{2} = 36 \cdot \frac{25}{9} = 100.\]
\[Ответ:100.\]
\[\boxed{\mathbf{17.}}\]
\[C = \sqrt{\pi}.\]
\[Длина\ окружности:\]
\[C = 2\pi R\]
\[R = \frac{C}{2\pi} = \frac{\sqrt{\pi}}{2\pi} = \frac{1}{2\sqrt{\pi}}.\]
\[Площадь\ круга:\]
\[S = \pi R^{2} = \pi \cdot \left( \frac{1}{2\sqrt{\pi}} \right)^{2} = \pi \cdot \frac{1}{4\pi} =\]
\[= \frac{1}{4} = 0,25.\]
\[Ответ:0,25.\]
\[\boxed{\mathbf{18.}}\]
\[R = 1;\ \ C_{\cup} = 2.\]
\[C_{\cup} = \frac{\alpha}{2\pi} \cdot 2\pi R = \alpha R;\]
\[\alpha = \frac{C_{\cup}}{R};\]
\[\alpha - центральный\ угол\ в\ \]
\[радианах.\]
\[Площадь\ сектора:\]
\[S = \frac{\alpha}{2\pi} \cdot \pi R^{2} = \frac{\alpha R^{2}}{2} = \frac{C_{\cup}}{R} \cdot \frac{R^{2}}{2} =\]
\[= \frac{C_{\cup} \cdot R}{2} = \frac{2 \cdot 1}{2} = 1.\]
\[Ответ:1.\]
\[\boxed{\mathbf{19.}}\]
\[Пусть\ x - одна\ сторона\ \]
\[прямоугольника;\]
\[(x - 2) - другая\ сторона.\]
\[Известно,\ что\ периметр\ \]
\[равен\ 16.\]
\[Составим\ уравнение:\]
\[2 \cdot (x + x - 2) = 16\]
\[2x - 2 = 8\]
\[2x = 10\]
\[x = 5\ (см) - одна\ сторона\ \]
\[прямоугольника.\]
\[x - 2 = 5 - 2 = 3\ (см) - другая\ \]
\[сторона.\]
\[S = 5 \cdot 3 = 15\ см^{2}.\]
\[Ответ:15\ см^{2}.\]
\[\boxed{\mathbf{20.}}\]
\[34\ :2 = 17 - сумма\ длин\ двух\ \]
\[сторон.\]
\[Пусть\ x - одна\ сторона\ \]
\[прямоугольника;\]
\[(17 - x) - другая\ сторона.\]
\[Площадь\ равна\ 60.\]
\[Составим\ уравнение:\]
\[x(17 - x) = 60\]
\[17x - x^{2} - 60 = 0\]
\[x^{2} - 17x + 60 = 0\]
\[x_{1} + x_{2} = 17;\ \ \ x_{1} \cdot x_{2} = 60\]
\[x_{1} = 12;\ \ \ x_{2} = 5.\]
\[12\ и\ 5 - стороны\ \]
\[прямоугольника.\]
\[По\ теореме\ Пифагора\ найдем\ \]
\[его\ диагональ:\]
\[d = \sqrt{12^{2} + 5^{2}} = \sqrt{144 + 25} =\]
\[= \sqrt{169} = 13.\]
\[Ответ:13.\]
\[\boxed{\mathbf{21.}}\]
\[a = 9;\ \ b = 15;\]
\[h_{a} = 10;\ \ h_{b} - ?\]
\[S = a \cdot h_{a} = b \cdot h_{b}\]
\[9 \cdot 10 = 15 \cdot h_{b}\]
\[h_{b} = 90\ :15\]
\[h_{b} = 6.\]
\[Ответ:6.\]
\[\boxed{\mathbf{22.}}\]
\[P = 12;\ \ r = 1.\]
\[S = \frac{1}{2} \cdot P \cdot r = \frac{1}{2} \cdot 12 \cdot 1 = 6.\]
\[Ответ:6.\]
\[\boxed{\mathbf{23.}}\]
\[a = 2;\ \ b = 8;\ \ S = 30.\]
\[S = \frac{a + b}{2} \cdot h\]
\[h = \frac{2S}{a + b} = \frac{2 \cdot 30}{8 + 2} = 6.\]
\[b - a = 8 - 2 = 6;\]
\[h = b - a:\]
\[получившися\ \mathrm{\Delta} -\]
\[равнобедренный.\]
\[Значит,\ острый\ угол\ \alpha:\]
\[\alpha = 90{^\circ}\ :2 = 45{^\circ}.\]
\[Ответ:45{^\circ}.\]
\[\boxed{\mathbf{24.}}\]
\[A(5;9).\]
\[При\ симметрии\ относительно\ \]
\[Oy:\]
\[A_{1}( - 5;9)\text{.\ }\]
\[Ответ:x_{1} = - 5.\]
\[\boxed{\mathbf{25.}}\]
\[A(3;7);\ \ B( - 1;3).\]
\[Ордината\ середины\ отрезка:\]
\[y = \frac{7 + 3}{2} = 5.\]
\[Ответ:y = 5.\]
\[\boxed{\mathbf{26.}}\]
\[\overrightarrow{a}\left\{ 6;8 \right\}:\]
\[\left| \overrightarrow{a} \right| = \sqrt{6^{2} + 8^{2}} = \sqrt{100} = 10.\]
\[Ответ:10.\]
\[\boxed{\mathbf{27.}}\]
\[A(3;0);\ \ B(0;3):\]
\[\frac{x - 3}{0 - 3} = \frac{y - 0}{3 - 0}\]
\[- (x - 3) = y\]
\[Уравнение\ прямой:\]
\[y = - x + 3.\]
\[k = - 1.\]
\[Ответ:\ - 1.\]
\[\boxed{\mathbf{28.}}\]
\[O(0;0);A(8;6);B(12; - 2).\]
\[\overrightarrow{\text{BO}} = \overrightarrow{\text{AC}} = \overrightarrow{a}\]
\[\overrightarrow{\text{BO}} = \left\{ 0 - 12;0 + 2 \right\} = \left\{ - 12;2 \right\}.\]
\[a_{x} = - 12;\ \ a_{y} = 2.\]
\[x_{C} = x_{A} + a_{x} = 8 - 12 = - 4;\]
\[y_{C} = y_{A} + a_{y} = 6 + 2 = 8.\]
\[Ответ:8.\]
\[\boxed{\mathbf{29.}}\]
\[3x + 2y = 6;\ \ при\ y = 0:\]
\[3x + 2 \cdot 0 = 6\]
\[3x = 6\]
\[x = 2.\]
\[Ответ:x = 2.\]
\[\boxed{\mathbf{30.}}\]
\[3x + 2y = 6;\ \ y = - x:\]
\[2y = 6 - 3x\]
\[y = 3 - 1,5x.\]
\[Получаем:\]
\[3 - 1,5x = - x\]
\[0,5x = 3\]
\[x = 6.\]
\[y = - x = - 6.\]
\[Ответ:\ - 6.\]
\[\boxed{\mathbf{31.}}\]
\[P(5;7) - центр\ окружности.\]
\[r\bot Ox:\]
\[x = x_{P} = 7.\]
\[(7;0) - точка\ касания\ оси\ \text{Ox.}\]
\[Найдем\ радиус\ окружности:\]
\[r = \sqrt{(7 - 7)^{2} + (5 - 0)^{2}} =\]
\[= \sqrt{25} = 5.\]
\[Ответ:5.\]
\[\boxed{\mathbf{32.}}\]
\[⊿ABC;\ \ \]
\[A(6;0);B(0;10);C(6;10).\]
\[P\left( x_{p};y_{p} \right) - центр\ описанной\ \]
\[окружности.\]
\[\overrightarrow{\text{CA}} = \left\{ 6 - 6;10 - 0 \right\} = \left\{ 0;10 \right\};\]
\[\overrightarrow{\text{CB}} = \left\{ 0 - 6;10 - 10 \right\} = \left\{ - 6;0 \right\};\]
\[\overrightarrow{\text{CA}} \cdot \overrightarrow{\text{CB}} = 0 \cdot ( - 6) + 10 \cdot 0 = 0.\]
\[\overrightarrow{\text{CA}}\bot\overrightarrow{\text{CB}}:\]
\[⊿\text{ABC} - прямоугольный;\]
\[центр\ описанной\ окружности -\]
\[середина\ гипотенузы\ \text{AB.}\]
\[x_{p} = \frac{6 + 0}{2} = 3;\ \ \ y_{p} = \frac{0 + 10}{2} =\]
\[= 5.\]
\[Ответ:3.\]
\[\boxed{\mathbf{33.}}\]
\[⊿ABC;\ \ \]
\[A(1;1);B(4;3);C(4;5).\]
\[Достроим:\]
\[Получим:\]
\[S = \frac{1}{2} \cdot 3 \cdot 4 - \frac{1}{2} \cdot 2 \cdot 3 = 6 - 3 =\]
\[= 3.\]
\[Ответ:3.\]
\[\boxed{\mathbf{34.}}\]
\[ABCD - прямоугольник;\]
\[AB = 6;\ \ AD = 8.\]
\[По\ правилу\ параллелограмма:\]
\[\overrightarrow{\text{AB}} + \overrightarrow{\text{AD}} = \overrightarrow{\text{AB}} + \overrightarrow{\text{BC}} = \overrightarrow{\text{AC}}.\]
\[Длина\ суммы\ векторов\ равна\ \]
\[длине\ диагонали:\]
\[\left| \overrightarrow{\text{AB}} + \overrightarrow{\text{AD}} \right| = \left| \overrightarrow{\text{AC}} \right| = AC =\]
\[= \sqrt{AB^{2} + AD^{2}} = \sqrt{6^{2} + 8^{2}} =\]
\[= 10.\]
\[Ответ:10.\]
\[\boxed{\mathbf{35.}}\]
\[ABCD - ромб;\]
\[AC = 12;\ \ BD = 16.\]
\[\overrightarrow{\text{AB}} = \overrightarrow{\text{AO}} + \overrightarrow{\text{OB}}\]
\[Диагонали\ ромба\ \]
\[перпендикулярны\ и\ в\ точке\ \]
\[пересечения\ делятся\ пополам:\]
\[AO = \frac{\text{AC}}{2} = \frac{12}{2} = 6;\ \ \ \]
\[OB = \frac{\text{BD}}{2} = \frac{16}{2} = 8.\]
\[\left( \overrightarrow{\text{AB}} \right)^{2} =\]
\[= \left( \overrightarrow{\text{AO}} \right)^{2} + \left( \overrightarrow{\text{OB}} \right)^{2} + 2\overrightarrow{\text{AO}} \cdot \overrightarrow{\text{OB}} =\]
\[= AO^{2} + OB^{2} + 2AO \cdot OB \cdot \cos{90{^\circ}} =\]
\[= AO^{2} + OB^{2} = 6^{2} + 8^{2} = 10^{2}\]
\[\left| \overrightarrow{\text{AB}} \right| = 10.\]
\[Ответ:10.\]
\[\boxed{\mathbf{36.}}\]
\[ABCD - ромб;\]
\[AC = 12;BD = 16.\]
\[Диагонали\ ромба\ \]
\[перпендикулярны\ и\ в\ точке\ \]
\[пересечения\ делятся\ пополам:\]
\[AO = \frac{\text{AC}}{2} = \frac{12}{2} = 6;\ \ \]
\[BO = \frac{\text{BD}}{2} = \frac{16}{2} = 8.\]
\[\overrightarrow{\text{BO}} = \overrightarrow{\text{OD}};\]
\[\angle\left( \overrightarrow{\text{AO}};\overrightarrow{\text{BO}} \right) = \angle\left( \overrightarrow{\text{AO}};\overrightarrow{\text{OD}} \right) = 90{^\circ};\]
\[\overrightarrow{\text{AO}} \cdot \overrightarrow{\text{BO}} = AO \cdot BO \cdot \cos{90{^\circ}} = 0.\]
\[Ответ:0.\]
\[\boxed{\mathbf{37.}}\]
\[⊿ABC - равносторонний;\]
\[AB = \sqrt{3}.\]
\[Проведем\ \overrightarrow{\text{CD}} = \overrightarrow{\text{AB}}:\]
\[ACDB - параллелограмм.\]
\[По\ правилу\ параллелограмма:\]
\[\overrightarrow{\text{AB}} + \overrightarrow{\text{AC}} = \overrightarrow{\text{AC}} + \overrightarrow{\text{CD}} = \overrightarrow{\text{AD}}\]
\[\left| \overrightarrow{\text{AB}} + \overrightarrow{\text{AC}} \right| = \left| \overrightarrow{\text{AD}} \right| = AD;\]
\[\angle ACD = 180{^\circ} - \angle A = 120{^\circ};\]
\[\cos{120{^\circ}} = - \cos(180{^\circ} - 120{^\circ}) =\]
\[= - \cos{60{^\circ}} = - \frac{1}{2}.\]
\[По\ теореме\ косинусов:\]
\[AD^{2} =\]
\[= AC^{2} + CD^{2} - 2AC \cdot CD \cdot \cos{\angle ACD} =\]
\[= \left( \sqrt{3} \right)^{2} + \left( \sqrt{3} \right)^{2} - 2\sqrt{3} \cdot \sqrt{3} \cdot \left( - \frac{1}{2} \right) =\]
\[= 9\]
\[AD = \sqrt{9} = 3.\]
\[Ответ:3.\]
\[\boxed{\mathbf{38.}}\]
\[⊿ABC - равносторонний;\]
\[AB = 1.\]
\[Решение.\]
\[Все\ углы\ ⊿\text{ABC}\ равны\ 60{^\circ}.\]
\[\overrightarrow{\text{AB}} \cdot \overrightarrow{\text{AC}} = AB \cdot AC \cdot \cos{60{^\circ}} =\]
\[= 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2} = 0,5.\]
\[Ответ:0,5.\]