\[\boxed{\mathbf{866.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[Гипербола;\]
\[\angle x,асим = 60{^\circ};\]
\[F_{1}F_{2} = 4.\]
\[Найти:\]
\[\textbf{а)}\ \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1;\]
\[\textbf{б)}\ e - ?;\]
\[\textbf{в)}\ x = \frac{a^{2}}{c}.\]
\[Решение.\]
\[1)\ Расстояние\ между\ фокусами\ \]
\[F_{1}F_{2} = 4:\]
\[c = OF_{1} = OF_{2} = 2.\]
\[2)\ tg\ \angle F_{2}OA = tg\ 60{^\circ} = \sqrt{3}\]
\[\frac{b}{a} = \sqrt{3}.\]
\[3)\ b^{2} = c^{2} - a^{2}\ \]
\[(по\ свойству\ гиперболы):\]
\[b^{2} = 4 - a^{2}\ \]
\[\frac{b^{2}}{a^{2}} = 3 = \frac{4 - a^{2}}{a^{2}}\]
\[3a^{2} = 4 - a^{2}\ \]
\[4a^{2} = 4\]
\[\ a^{2} = 1;\ \]
\[b^{2} = 4 - 1 = 3.\]
\[\textbf{а)}\ Каноническое\ уравнение\ \]
\[гиперболы:\]
\[\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\ \]
\[x^{2} - \frac{y^{2}}{3} = 1.\]
\[\textbf{б)}\ Эксцентриситет\ равен:\ \ \]
\[e = \frac{c}{a} = \frac{2}{1} = 2.\]
\[\textbf{в)}\ Напишем\ уравнения\ \]
\[директрис:\]
\[x = \frac{a^{2}}{c}\]
\[x = - \frac{1}{2}\ \ и\ \ x = \frac{1}{2}.\]
\[\mathbf{Ответ}:\ \ а)\ x^{2} - \frac{y^{2}}{3} = 1;\ \ \]
\[\textbf{б)}\ e = 2;\ \ в)\ x = \pm \frac{1}{2}.\]