\[\boxed{\mathbf{843.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[m_{a} = 9\ см;\]
\[m_{b} = 12\ см;\]
\[m_{c} = 15\ см\]
\[Найти:\]
\[S_{\text{ABC}}.\]
\[Решение.\]
\[1)\ \ Найдем\ площадь\ \]
\[треугольника\ составленного\ \]
\[из\ медиан:\]
\[p = \frac{m_{a} + m_{b} + m_{c}}{2} =\]
\[= \frac{9 + 12 + 15}{2} = \frac{36}{2} = 18\ см;\]
\[S_{m} =\]
\[= \sqrt{18 \bullet (18 - 9)(18 - 12)(18 - 15)} =\]
\[= \sqrt{18 \bullet 9 \bullet 6 \bullet 3} = \sqrt{2916} =\]
\[= 54\ см^{2}.\]
\[2)\ Из\ доказанного\ в\ задаче\ 841:\]
\[\frac{S_{m}}{S_{\text{ABC}}} = \frac{3}{4};\]
\[S_{\text{ABC}} = \frac{4S_{m}}{3} = \frac{54 \bullet 4}{3} = 72\ см^{2}.\]
\[Ответ:\ \ S_{\text{ABC}} = 72\ см^{2}.\]