\[\boxed{\mathbf{842.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[h_{a} = 4\ см;\]
\[h_{b} = 3\ см;\]
\[h_{c} = 6\ см.\]
\[Найти:\]
\[S_{\text{ABC}}.\]
\[Решение.\]
\[1)\ \ Найдем\ стороны\ \]
\[треугольника\ \text{ABC.}\]
\[Пусть\ BC = a,\ AB = c,\ AC = b\ \ и\ \ \]
\[h_{a},h_{b},h_{c} - высоты,опущенные\]
\[к\ данным\ сторонам:\]
\[S_{\text{ABC}} = \frac{1}{2}h_{a}a = \frac{1}{2}h_{b}b = \frac{1}{2}h_{c}c\]
\[4a = 3b = 6c.\]
\[2)\ c = \frac{2}{3}a\ \ и\ \ b = \frac{4}{3}a;\ \]
\[полупериметр\ \mathrm{\Delta}ABC:\]
\[p = \frac{a + b + c}{2} =\]
\[= \frac{1}{2}\left( a + \frac{4}{3}a + \frac{2}{3}a \right) = \frac{3a}{2}\]
\[(p - a) = \frac{a}{2};\ \]
\[(p - b) = \frac{3a}{2} - \frac{4}{3}a = \frac{a}{6};\]
\[(p - c) = \frac{3}{2}a - \frac{2}{3}a = \frac{5a}{6}.\]
\[3)\ S_{\text{ABC}} =\]
\[= \sqrt{p(p - a)(p - b)(p - c)} =\]
\[= \sqrt{\frac{3a}{2} \bullet \frac{a}{2} \bullet \frac{a}{6} \bullet \frac{5a}{6}} = \frac{a^{2}\sqrt{15}}{12} =\]
\[= \frac{1}{2} \bullet 4 \bullet a\]
\[a = \frac{24}{\sqrt{15}}\ см;\]
\[S_{\text{ABC}} = \frac{1}{2} \bullet 4 \bullet \frac{24}{\sqrt{15}} = \frac{48}{\sqrt{15}} =\]
\[= \frac{48 \bullet \sqrt{15}}{15} = \frac{16\sqrt{15}}{3}\ см^{2}.\]
\[Ответ:\ \ S_{\text{ABC}} = \frac{16\sqrt{15}}{5}\ см^{2}.\]