\[\boxed{\mathbf{77.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[У\ параллелепипеда\ боковые\ \]
\[ребра\ равны.\]
\[Решение.\]
\[Пусть\ BB_{1} = x.\]
\[\frac{\text{AB}}{\text{BC}} = \frac{4}{5};\ \frac{\text{BC}}{BB_{1}} = \frac{5}{6};\ \]
\[BC = \frac{5x}{6};\]
\[AB = \frac{4BC}{5} = \frac{4 \cdot \frac{5x}{6}}{5} = \frac{2}{3}\text{x.}\]
\[4AB + 4BC + 4AA_{1} = 120\]
\[AA_{1} = BB_{1} = x;\]
\[4 \cdot \left( AB + BC + BB_{1} \right) = 120.\]
\[Составим\ уравнение:\]
\[\frac{2}{3}x + \frac{5}{6}x + x = 30\ \ \ \ \ \ | \cdot 6\]
\[4x + 5x + 6x = 180\]
\[15x = 180\]
\[x = 12\ (см) - BB_{1}.\]
\[AB = \frac{2 \cdot 12}{3} = 8\ см.\]
\[BC = \frac{5 \cdot 12}{6} = 10\ см.\]
\[Ответ:8\ см;10\ см;12\ см.\]