\[\boxed{\mathbf{681.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[\textbf{а)}\ x^{2} - 4x + y^{2} + z^{2} = 0\]
\[\left( x^{2} - 4x + 4 \right) + y^{2} + z^{2} - 4 = 0\]
\[(x - 2)^{2} + y^{2} + z^{2} = 4 -\]
\[уравнение\ сферы.\]
\[O(2;0;0);\ \ R = 2.\]
\[\textbf{б)}\ x^{2} + y^{2} + z^{2} - 2y = 24\]
\[x^{2} + \left( y^{2} - 2y + 1 \right) + z^{2} - 1 =\]
\[= 24\]
\[x^{2} + (y - 1)^{2} + z^{2} = 25 -\]
\[уравнение\ сферы.\]
\[O(0;1;0);\ \ R = 5.\]
\[\textbf{в)}\ x^{2} + 2x + y^{2} + z^{2} = 3\]
\[\left( x^{2} + 2x + 1 \right) - 1 + y^{2} + z^{2} = 3\]
\[(x + 1)^{2} + y^{2} + z^{2} = 4 -\]
\[уравнение\ сферы.\]
\[O( - 1;0;0);\ \ R = 2.\]
\[\textbf{г)}\ x^{2} - x + y^{2} + 3y + z^{2} - 2z =\]
\[= 2,5\ \]
\[\left( x - \frac{1}{2} \right)^{2} + \left( y + \frac{3}{2} \right)^{2} + (z - 1)^{2} =\]
\[= 2,5 + 0,25 + 2,25 + 1 = 6\]
\[\left( x - \frac{1}{2} \right)^{2} + \left( y + \frac{3}{2} \right)^{2} + (z - 1)^{2} =\]
\[= 6 - уравнение\ сферы.\]
\[O\left( \frac{1}{2}; - \frac{3}{2};1 \right);\ \ R = \sqrt{6}.\]
\[Параграф\ 2.\ Скалярное\ произведение\ векторов\]