\[\boxed{\mathbf{667.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[A\left( \frac{3}{2};1; - 2 \right);\ \ B(2;2; - 3);\ \ \]
\[C(2;0; - 1).\]
\[Решение.\]
\[1)\ P_{\text{ABC}} = \left| \text{AB} \right| + \left| \text{BC} \right| + \left| \text{CA} \right| =\]
\[= \sqrt{2,25} + \sqrt{8} + \sqrt{2,25} =\]
\[= 2 \cdot 1,5 + 2\sqrt{2} = 3 + 2\sqrt{2}.\]
\[2)\ Длина\ медиан\ \]
\[рассчитывается\ по\ формуле\ \]
\[координат\ середины\ отрезка:\]
\[M_{A}(2;1; - 2);\ \ \]
\[M_{B}(1,75;0,5; - 1,5);\ \]
\[M_{C}(1,75;1,5; - 2,5);\]
\[AM_{A}\left\{ 0,5;0;0 \right\};\ \ \ \]
\[BM_{B}\left\{ - 0,25; - 1,5;1,5 \right\};\ \ \]
\[CM_{C}\left\{ - 0,25;1,5;\ - 1,5 \right\}.\]
\[\left| AM_{A} \right| = \sqrt{{0,5}^{2} + 0^{2} + 0^{2}} = 0,5.\]
\[\left| BM_{B} \right| = \sqrt{{0,25}^{2} + {1,5}^{2} + {1,5}^{2}} =\]
\[= \sqrt{{0,25}^{2} + 4,5} = \sqrt{\frac{73}{16}} = \frac{\sqrt{73}}{4}.\]
\[\left| CM_{C} \right| = \sqrt{{0,25}^{2} + {1,5}^{2} + {1,5}^{2}} =\]
\[= \frac{\sqrt{73}}{4}.\]