\[\boxed{\mathbf{634.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[ABCD - тетраэдр;\ \ \]
\[\text{M\ }и\ N - точки\ пересечения\ \]
\[медиан;\]
\[\mathrm{\Delta}\text{ADB\ }и\ \mathrm{\Delta}\text{BDC.}\]
\[Доказать:\ \]
\[MN \parallel AC.\ \ \]
\[Найти:\ \ MN\ :AC.\]
\[Решение.\]
\[1)\ Пусть\ точка\ E - середина\ \]
\[BD;\ \ \ \]
\[\text{M\ }и\ N - точки\ пересечения\ \]
\[медиан\ \mathrm{\Delta}\text{ADB\ }и\ \mathrm{\Delta}BDC:\]
\[M \in AE\ и\ N \in CE.\]
\[2)\ \overrightarrow{\text{AE}} = 3\overrightarrow{\text{ME}}\ \ и\ \ \overrightarrow{\text{EC}} = 3\overrightarrow{\text{EN}}:\]
\[\overrightarrow{\text{AC}} = \overrightarrow{\text{AE}} + \overrightarrow{\text{EC}} = 3\overrightarrow{\text{ME}} + 3\overrightarrow{\text{EN}} =\]
\[= 3\left( \overrightarrow{\text{ME}} + \overrightarrow{\text{EN}} \right) = 3\overrightarrow{\text{MN}}.\]
\[3)\ \overrightarrow{\text{AC}} = 3\overrightarrow{\text{MN}}:\]
\[векторы\ \overrightarrow{\text{AC}}\ и\ \overrightarrow{\text{MN}} -\]
\[коллинеарны;\]
\[AC \parallel MN.\]
\[Что\ и\ требовалось\ доказать.\]
\[4)\frac{\text{MN}}{\text{AC}} = \frac{\left| \overrightarrow{\text{MN}} \right|}{\left| \overrightarrow{\text{AC}} \right|} = \frac{1}{3}.\]
\[Ответ:\ \frac{\text{MN}}{\text{AC}} = \frac{1}{3}.\]