\[\boxed{\mathbf{542.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[конус;\]
\[MABCD - пирамида;\]
\[MH - высота;\]
\[ABCD - ромб;\]
\[AB = a;\]
\[\angle BAD = \varphi;\]
\[\angle MPH = \theta.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ Построим\ HP\bot AB\ \ и\ \ \]
\[HT\bot BC:\]
\[MP\bot AB;\ \ MT\bot BC\ \]
\[(по\ теореме\ о\ трех\ углах);\]
\[HP = HT = r - радиус\ \]
\[основания\ вписанного\ конуса;\]
\[MP = MT = l - образующая\ \]
\[конуса.\]
\[2)\ Площадь\ основания\ \]
\[пирамиды:\]
\[S_{осн} = S_{\text{ABCD}} = 4 \bullet S_{\text{AHB}};\]
\[S_{\text{ABCD}} = 2 \bullet \left( \frac{1}{2}a \bullet a \bullet \sin\varphi \right) =\]
\[= a^{2}\sin\varphi;\]
\[S_{\text{AHB}} = \frac{1}{2} \bullet AB \bullet HP = \frac{1}{2}a \bullet HP.\]
\[Отсюда:\]
\[\frac{4}{2}a \bullet HP = a^{2} \bullet \sin\varphi\]
\[HP = \frac{1}{2}a \bullet \sin\varphi.\]
\[3)\ \mathrm{\Delta}MHP - прямоугольный:\]
\[\frac{\text{MH}}{\text{HP}} = tg\ \theta\]
\[MH = HP \bullet tg\ \theta = \frac{a \bullet \sin\varphi \bullet tg\ \theta}{2}.\]
\[4)\ V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi \bullet HP^{2} \bullet MH;\]
\[V =\]
\[= \frac{1}{3}\pi \bullet \frac{a^{2} \bullet \sin^{2}\varphi}{4} \bullet \frac{a \bullet \sin\varphi \bullet tg\ \theta}{2} =\]
\[= \frac{a^{3}\pi}{24} \bullet \sin^{3}\varphi \bullet tg\ \theta.\]
\[\mathbf{Отв}ет:\ \ V = \frac{a^{3}\pi}{24} \bullet \sin^{3}\varphi \bullet tg\ \theta.\]