\[\boxed{\mathbf{536.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[\textbf{а)}\ Дано:\]
\[ABCM - тетраэдр;\]
\[AC = AB = b;\]
\[MA = MC = MB = BC = a;\]
\[MH - высота.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ AC = AB = b:\ \]
\[\mathrm{\Delta}ABC - равнобедренный.\]
\[2)\ \mathrm{\Delta}MAH = \mathrm{\Delta}MHC = \mathrm{\Delta}MHB:\]
\[MC = MA = MB;\ \]
\[MH - общий\ катет.\]
\[Отсюда:\ \ \]
\[AH = HB = HC = R - \ радиус\ \]
\[описанной\ около\ \mathrm{\Delta}ABC\ \]
\[окружности.\]
\[Пусть\ a,b\ и\ c - стороны\ \mathrm{\Delta}ABC:\]
\[R = \frac{\text{abc}}{4S_{\text{ABC}}}.\]
\[3)\ В\ \mathrm{\Delta}\text{ABC\ }построим\ AP\bot BC.\]
\[По\ теореме\ Пифагора:\ \ \]
\[AP^{2} = AC^{2} - \left( \frac{1}{2}\text{BC} \right)^{2}\]
\[AP = \sqrt{b^{2} - \frac{a^{2}}{4}}.\]
\[4)\ Площадь\ основания\ \]
\[тетраэдра:\]
\[S_{\text{ABC}} = \frac{1}{2}BC \bullet AP = \frac{a}{2}\sqrt{b^{2} - \frac{a^{2}}{4}}.\]
\[5)\ AH = R = \frac{\text{abb}}{\frac{4a}{2}\sqrt{b^{2} - \frac{a^{2}}{4}}} =\]
\[= \frac{b^{2}}{\sqrt{4b^{2} - \frac{a^{2}}{4}}};\]
\[MH = \sqrt{MA^{2} - AH^{2}} =\]
\[= \sqrt{a^{2} - \frac{b^{4}}{4b^{2} - a^{2}}} =\]
\[= \sqrt{\frac{4a^{2}b^{2} - a^{4} - b^{4}}{4b^{2} - a^{2}}}.\]
\[6)\ V = \frac{1}{3} \bullet S_{\text{ABC}} \bullet MH =\]
\[= \frac{1}{3} \bullet \frac{a}{2}\sqrt{b^{2} - \frac{a^{2}}{4}} \bullet \sqrt{\frac{4a^{2}b^{2} - a^{4} - b^{4}}{4b^{2} - a^{2}}} =\]
\[= \frac{a}{12} \bullet \sqrt{4a^{2}b^{2} - a^{4} - b^{4}}.\]
\[\mathbf{Отв}ет:\ \]
\[\ V = \frac{a}{12} \bullet \sqrt{4a^{2}b^{2} - a^{4} - b^{4}}.\]
\[\textbf{б)}\ Дано:\ \]
\[ABCM - тетраэдр;\]
\[AC = AB = b;\]
\[MA = MC = MB = BC = a;\]
\[MH - высота.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ AC = AB = a:\]
\[\mathrm{\Delta}ABC - равнобедренный.\]
\[Построим\ AP\bot BC\ \]
\[(AP - медиана\ и\ высота):\]
\[MP\bot CB - \ по\ теореме\ о\ трех\ \]
\[перпендикулярах;\]
\[MP - высота\ и\ медиана\ в\ \]
\[\mathrm{\Delta}MCB;\]
\[CB\bot MPA.\]
\[2)\ \mathrm{\Delta}APC - прямоугольный:\]
\[AP = \sqrt{AC^{2} - \left( \frac{1}{2}\text{BC} \right)^{2}} =\]
\[= \sqrt{a^{2} - \frac{b^{2}}{4}}.\]
\[3)\ Площадь\ основания\ \]
\[тетраэдра:\]
\[S_{\text{ABC}} = \frac{1}{2}AP \bullet BC =\]
\[= \frac{1}{2}b \bullet \sqrt{a^{2} - \frac{b^{2}}{4}} = \frac{b}{4}\sqrt{4a^{2} - b^{2}}.\]
\[4)\ \mathrm{\Delta}MBC = \mathrm{\Delta}ABC\ \]
\[(по\ трем\ сторонам):\]
\[MP = AP = \sqrt{a^{2} - \frac{b^{2}}{4}} =\]
\[= \frac{\sqrt{4a^{2} - b^{2}}}{2}.\]
\[5)\ В\ \mathrm{\Delta}\text{MAP\ }построим\ PT\bot AM;\ \ \ \]
\[PT \cap MH = F:\]
\[PT - высота\ и\ медиана\ в\ \ \mathrm{\Delta}\text{MAP\ }\]
\[(так\ как\ AP = MP).\]
\[Отсюда:\ \]
\[MT = TA = \frac{1}{2}MA = \frac{b}{2}.\]
\[6)\ \mathrm{\Delta}PTA - прямоугольный:\]
\[PT = \sqrt{AP^{2} - AT^{2}} =\]
\[= \sqrt{\frac{4a^{2} - b^{2}}{4} - \frac{b^{2}}{4}} = \frac{\sqrt{4a^{2} - 2b^{2}}}{2}.\]
\[7)\ S_{\text{PMA}} = \frac{1}{2}PT \bullet AM =\]
\[= \frac{1}{2}MH \bullet AP:\]
\[\text{MH\ }\frac{\sqrt{4a^{2} - b^{2}}}{2} =\]
\[= b \bullet \frac{\sqrt{4a^{2} - 2b^{2}}}{2};\]
\[MH = \frac{b\sqrt{4a^{2} - {2b}^{2}}}{\sqrt{4a^{2} - b^{2}}}.\]
\[8)\ V = \frac{1}{3} \bullet S_{\text{ABC}} \bullet MH =\]
\[= \frac{1}{3} \bullet \frac{b\sqrt{4a^{2} - b^{2}}}{4} \bullet b \bullet \frac{\sqrt{4a^{2} - 2b^{2}}}{2} =\]
\[= \frac{b^{2}}{12}\sqrt{4a^{2} - 2b^{2}}.\]
\[\mathbf{Отв}ет:\ \ V = \frac{b^{2}}{12}\sqrt{4a^{2} - 2b^{2}}.\]