\[\boxed{\mathbf{530.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCDM - правильная\ \]
\[пирамида;\]
\[\angle MAC = \varphi;\]
\[MO - высота;\]
\[EK = m.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ ABCDM - правильная\ \]
\[пирамида:\]
\[\text{AB} = \text{BC} = \text{CD} = \text{DA} = a;\]
\[2)\ E - середина\ отрезка\ AM;\ \]
\[EK\bot AO\ и\ EK = m;\]
\[E \in AM\ и\ K \in AO:\ \]
\[EK \in AMO.\]
\[3)\ \mathrm{\Delta}\ AMO - прямоугольный:\]
\[MO\bot AO;\ \ \ EK\bot MO;\ AE = EM;\ \]
\[EK - средняя\ линия.\]
\[Отсюда:\ \]
\[MO = 2m;\]
\[AK = \frac{m}{\text{tg\ φ}};\ \ \ \]
\[AO = 2AK = \frac{2m}{\text{tg\ φ}};\ \ \ \ \]
\[AC = 2AO = \frac{4m}{\text{tg\ φ}}.\]
\[4)\ \mathrm{\Delta}ABC - прямоугольный\ \]
\[(\angle B = 90{^\circ}):\]
\[AC = a\sqrt{2} = \frac{4m}{\text{tg\ φ}}\]
\[a = \frac{2\sqrt{2}m}{\text{tg\ φ}}.\]
\[5)\ V = \frac{1}{3} \bullet S_{осн} \bullet \frac{1}{3} \bullet a^{2} \bullet MO =\]
\[= \frac{1}{3} \bullet \left( \frac{2\sqrt{2}m}{\text{tg\ φ}} \right)^{2} \bullet 2m =\]
\[= \frac{2m}{3} \bullet \frac{8m^{2}}{tg^{2}\text{\ φ}} = \frac{16m^{3}}{3 \bullet tg^{2}\ \varphi\ }.\]
\[\mathbf{Отв}ет:\ \ V = \frac{16m^{3}}{3 \bullet tg^{2}\ \varphi\ }.\]