\[\boxed{\mathbf{348.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[h = 8\ дм;\]
\[SO = h = 8\ дм.\]
\[Найти:\]
\[SO_{1}.\]
\[Решение.\]
\[Плоскость,\ параллельная\ \]
\[основанию,\ пересекает\ конус\ \]
\[по\ окружности,разбивает\ его\ \]
\[на\ две\ части.\]
\[\mathrm{\Delta}SO_{1}A\sim\mathrm{\Delta}SOA:\]
\[\frac{SO_{1}}{\text{SO}} = \frac{O_{1}A_{1}}{\text{OA}} = \frac{SO_{1}}{8} = \frac{r}{R};\]
\[S = \pi R^{2};\]
\[R = \sqrt{\frac{S}{\pi}}.\]
\[\frac{SO_{1}}{8} = \sqrt{\frac{S_{1}}{\pi}}\ :\sqrt{\frac{S_{осн}}{\pi}} = \sqrt{\frac{S_{1}}{S_{осн}}}\]
\[SO_{1} = 8 \cdot \sqrt{\frac{S_{1}}{S_{осн}}}.\]
\[\textbf{а)}\ S_{1} = \frac{1}{2}S_{осн}:\]
\[SO_{1} = 8 \cdot \sqrt{\frac{1}{2}} = 4\sqrt{2}\ дм.\ \]
\[\textbf{б)}\ S_{1} = \frac{1}{4}S_{осн}:\]
\[SO_{1} = 8 \cdot \sqrt{\frac{1}{4}} = 8 \cdot \frac{1}{2} = 4\ дм.\]