\[\boxed{\mathbf{335.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\angle ACB = 90{^\circ};\]
\[h - высота\ и\ образующая;\]
\[R - радиус\ цилиндра.\]
\[Найти:\]
\[S_{сеч}.\]
\[Решение.\]
\[По\ теореме\ Пифагора:\]
\[AC = \sqrt{(2R)^{2} - BC^{2}} =\]
\[= \sqrt{4R^{2} - BC^{2}}.\]
\[S_{1} = S_{BB_{1}C_{1}C} = BC \cdot h = S_{2} =\]
\[= S_{\text{AC}C_{1}A_{1}} = h \cdot \sqrt{4R^{2} - BC^{2}}.\]
\[BC \cdot h = h\sqrt{4R^{2} - BC^{2}}\]
\[BC = \sqrt{4R^{2} - BC^{2}}\]
\[BC^{2} = 4R^{2} - BC^{2}\]
\[2BC^{2} = 4R^{2}\]
\[BC^{2} = 2R^{2}\]
\[BC = R\sqrt{2}\]
\[R = \frac{\text{BC}}{\sqrt{2}}.\]
\[S = 2Rh = \frac{2h \cdot BC}{\sqrt{2}} = \sqrt{2}BC \cdot h =\]
\[= \sqrt{2}S_{1} = \sqrt{2}S_{2}.\]
\[Ответ:S\sqrt{2}.\]