\[\boxed{\mathbf{326.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[r - радиус;\]
\[h - высота;\]
\[OP_{1} = d.\]
\[Решение.\]
\[A_{1}B;OO_{1} - скрещивающиеся\ \]
\[прямые.\]
\[\textbf{а)}\ r = 10\ дм;\ \ d = 8\ дм;\ \ \]
\[A_{1}B = 13\ дм.\]
\[AA_{1}B_{1}B - прямоугольник.\]
\[p\left( A_{1}B_{1}OO_{1} \right) = p\left( \left( AA_{1}B \right);OO_{1} \right);\ \ \]
\[OP\bot AB:\]
\[p\left( A_{1}B_{1}OO_{1} \right) = OP = d;\]
\[AP = BP = \sqrt{r^{2} - d^{2}} =\]
\[= \sqrt{10^{2} - 8^{2}} = 6\ дм;\]
\[AB = 2AP = 2 \cdot 6 = 12\ дм.\]
\[По\ теореме\ Пифагора:\]
\[H = \sqrt{A_{1}B^{2} - AB^{2}} =\]
\[= \sqrt{169 - 144} = \sqrt{25} = 5\ дм.\]
\[\textbf{б)}\ h = 6\ см;\ \ r = 5\ см;\ \ \]
\[A_{1}B = 10\ см.\]
\[AB = \sqrt{A_{1}B^{2} - h^{2}} = \sqrt{10^{2} - 6^{2}} =\]
\[= \sqrt{64} = 8\ см;\]
\[AP = PB = 4\ см.\]
\[По\ теореме\ Пифагора:\]
\[d = \sqrt{r^{2} - AP^{2}} = \sqrt{25 - 16} =\]
\[= \sqrt{9} = 3\ см.\]
\[Ответ:а)\ 5\ дм;б)\ 3\ см.\]