\[\boxed{\mathbf{305.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Решение.\]
\[По\ задаче\ 256\ (п.\ а):\]
\[h = \frac{a\sqrt{\cos\alpha}}{2\sin\frac{\alpha}{2}};\ \ a - сторона\ \]
\[основания.\]
\[Отсюда:\]
\[a = \frac{2h\sin\frac{\alpha}{2}}{\sqrt{\cos\alpha}}.\]
\[Диагональ\ основания = a\sqrt{2}.\]
\[Боковое\ ребро\ равно:\]
\[\sqrt{h^{2} + \frac{2h^{2}\sin^{2}\frac{\alpha}{2}}{\cos\alpha}} =\]
\[= h\sqrt{\frac{\cos\alpha + 2\sin^{2}\frac{\alpha}{2}}{\cos\alpha}} =\]
\[= h\sqrt{\frac{\cos\alpha - 1 + 1 + 2\sin^{2}\frac{\alpha}{2}}{\cos\alpha}} =\]
\[= h\sqrt{\frac{\cos\alpha + 1 - \cos\alpha}{\cos\alpha}} = \frac{h}{\sqrt{\cos\alpha}}.\]
\[Тогда:\]
\[S_{бок} = 4 \cdot S_{грани} =\]
\[= 4 \cdot \frac{1}{2} \cdot \frac{h^{2}}{\cos\alpha} \cdot \sin\alpha = 2h^{2}\text{tgα.}\]
\[Ответ:\ 2h^{2}\text{tgα.}\]