\[\boxed{\mathbf{283.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ребро = \text{a.}\]
\[Решение.\]
\[DO - высота\ тетраэдра;\]
\[O - центр\ ⊿ABC.\]
\[\textbf{а)}\ MK \parallel DB;\ \ MN \parallel BC:\]
\[⊿MKN - данное\ сечение.\]
\[AL = \frac{a\sqrt{3}}{2};\ \ AO = R = \frac{a\sqrt{3}}{3}.\]
\[⊿ADB - равносторонний;\]
\[KM \parallel DB.\]
\[AM = \frac{\text{AO}}{\sin{60{^\circ}}} = \frac{a\sqrt{3} \cdot 2}{3 \cdot \sqrt{3}} = \frac{2a}{3};\]
\[AM = KM = \frac{2a}{3}.\]
\[В\ треугольнике\ MKN:\]
\[\angle MKN = 60{^\circ} - углы\ с\ \]
\[соответственно\ \]
\[параллельными\ и\ одинаково\]
\[направленными\ сторонами\ \]
\[равны.\]
\[S_{\text{MNK}} = \frac{1}{2}MK \cdot KN \cdot \sin{60{^\circ}} =\]
\[= \frac{1}{2} \cdot \frac{2a}{3} \cdot \frac{2a}{3} \cdot \frac{\sqrt{3}}{2} = \frac{a^{2}\sqrt{3}}{9}.\]
\[\textbf{б)}\ OK\bot AD;\ \ ADO\bot NM:\]
\[AD\bot MN.\]
\[AD\bot MN;\ \ AD\bot OK:\]
\[AD\bot MNK.\]
\[Значит:\]
\[⊿MKN - сечение;\]
\[S_{\text{MKN}} = \frac{1}{2}OK \cdot MN.\]
\[⊿AMN - равносторонний;\]
\[MN = AM = \frac{2a}{3};\]
\[AO = \frac{a\sqrt{3}}{3};\]
\[OK = AO \cdot \sin{\angle DAO} =\]
\[= \frac{a\sqrt{3}}{3} \cdot \sin{\angle DAO}.\]
\[По\ теореме\ косинусов\ \]
\[(из\ ⊿ADL):\]
\[DL^{2} =\]
\[= AD^{2} + AL^{2} - 2AD \cdot AL \cdot \cos{\angle DAO}\]
\[\frac{3a^{2}}{4} =\]
\[= \frac{4a^{2} + 3a^{2}}{4} - a^{2}\sqrt{3} \cdot \cos{\angle DAO}\]
\[\frac{7a^{2} - 3a^{2}}{4} = a^{2}\sqrt{3}\cos{\angle DAO}\]
\[1 = \sqrt{3}\cos{\angle DAO}\]
\[\cos{\angle DAO} = \frac{1}{\sqrt{3}}.\]
\[\sin{\angle DAO} = \sqrt{1 - \left( \frac{1}{\sqrt{3}} \right)^{2}} = \sqrt{\frac{2}{3}};\]
\[OK = AO \cdot \sin{\angle DAO} =\]
\[= \frac{a\sqrt{3}}{3} \cdot \sqrt{\frac{2}{3}} = \frac{a\sqrt{2}}{3}.\]
\[S_{\text{MKN}} = \frac{1}{2} \cdot \frac{a\sqrt{2}}{3} \cdot \frac{2a}{3} = \frac{a^{2}\sqrt{2}}{9}.\]
\[Ответ:\ а)\ \frac{a^{2}\sqrt{3}}{9};б)\ \frac{a^{2}\sqrt{2}}{9}.\]