\[\boxed{\mathbf{266.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - прямоугольник;\]
\[AB = 8\ дм;\]
\[BC = 6\ дм;\]
\[SA = SB = SC = SD;\]
\[SO\bot ABCD.\]
\[Найти:\]
\[S_{\text{DKB}}.\]
\[Решение.\]
\[1)\ O - точка\ пересечения\ \]
\[диагоналей,\ равноудалена\ от\ \]
\[всех\ вершин\ ABCD.\]
\[2)\ ⊿DKB - сечение,\ \]
\[проведенное\ через\ диагональ\ \]
\[DB:\]
\[OK \parallel SA;\ \]
\[SA \parallel DKB.\]
\[3)\ По\ теореме\ синусов\ \]
\[(из\ ⊿BSC):\]
\[BC^{2} =\]
\[= SB^{2} + SC^{2} - 2SB \cdot SC \cdot \cos{\angle BSC}.\]
\[4)\ По\ теореме\ Пифагора\ \]
\[(из\ ⊿ABC):\]
\[AB = 8\ дм;\ \ BC = 6\ дм;\]
\[AC = \sqrt{AB^{2} + BC^{2}} =\]
\[= \sqrt{8^{2} + 6^{2}} = 10\ дм.\]
\[5)\ По\ теореме\ Пифагора\ \]
\[(из\ ⊿SOC):\]
\[SO = 2\ дм;\ \ BO = AO = 5\ дм;\]
\[SC = \sqrt{5^{2} + 2^{2}} = \sqrt{29}\ дм.\]
\[6)\ BC = SC = \sqrt{29}:\]
\[6^{2} =\]
\[= 29 + 29 - 2\sqrt{29} \cdot \sqrt{29} \cdot \cos{\angle BSC}\]
\[36 = 58 - 58\cos{\angle BSC}\]
\[\cos{\angle BSC} = \frac{22}{58} = \frac{11}{29}.\]
\[7)\ В\ треугольнике\ SAC:\]
\[OK - средняя\ линия;\]
\[K - середина\ SC;\]
\[SK = KC.\]
\[По\ теореме\ косинусов:\]
\[BK^{2} =\]
\[= SB^{2} + SK^{2} - 2SB \cdot SK \cdot \cos{\angle BSC} =\]
\[= 29 + \frac{29}{4} - 2 \cdot \frac{\sqrt{29} \cdot \sqrt{29} \cdot 11}{2 \cdot 29} =\]
\[= 29 + \frac{29}{4} - 11 = \frac{101}{4}\]
\[BK = \frac{\sqrt{101}}{2}\ см.\]
\[8)\ По\ теореме\ косинусов\ \]
\[\left( из\ ⊿\text{SDC} \right):\]
\[DC^{2} =\]
\[= SD^{2} + SC^{2} - 2SD \cdot SC \cdot \cos{\angle DSC} =\]
\[= 29 + 29 - 2\sqrt{29} \cdot \sqrt{29} \cdot \cos{\angle DSC}\]
\[64 = 58 - 58\cos{\angle DSC}\]
\[\cos{\angle DSC} = - \frac{3}{29}.\]
\[9)\ По\ теореме\ косинусов\ \]
\[(из\ ⊿DSK):\]
\[DK^{2} =\]
\[= DS^{2} + SK^{2} - 2SD \cdot SK \cdot \cos{\angle DSC} =\]
\[= 29 + \frac{29}{4} - 2 \cdot \frac{\sqrt{29} \cdot \sqrt{29}}{2} \cdot \left( - \frac{3}{29} \right) =\]
\[= 29 + \frac{29}{4} + 3 = \frac{157}{4};\]
\[DK = \frac{\sqrt{157}}{2}.\]
\[10)\ По\ теореме\ косинусов\ \]
\[(из\ ⊿BDK;DB = AC):\]
\[DB^{2} =\]
\[= DK^{2} + BK^{2} - 2DK \cdot BK \cdot \cos{\angle DKB}\]
\[100 =\]
\[= \frac{258}{4} - \frac{\sqrt{157 \cdot 101}}{4}\cos{\angle DKB}\]
\[\cos{\angle DKB} =\]
\[= \left( \frac{258}{4} - 100 \right) \cdot \frac{2}{\sqrt{157 \cdot 101}} =\]
\[= - \frac{71}{\sqrt{157 \cdot 101}}.\]
\[11)\ cos^{2}\alpha + sin^{2}\alpha = 1:\]
\[\sin\alpha = \sqrt{1 - cos^{2}\alpha};\]
\[\sin{\angle DKB} = \sqrt{1 - \frac{71^{2}}{157 \cdot 101}} =\]
\[= \sqrt{\frac{101 \cdot 157 - 5041}{157 \cdot 101}} =\]
\[= \sqrt{\frac{10\ 816}{157 \cdot 101}} = \frac{104}{\sqrt{157 \cdot 101}}.\]
\[12)\ S_{\text{DKB}} =\]
\[= \frac{1}{2}DK \cdot KB \cdot \sin{\angle DKB} =\]
\[= \frac{1}{2} \cdot \frac{\sqrt{157}}{2} \cdot \frac{\sqrt{101}}{2} \cdot \frac{104}{\sqrt{157 \cdot 101}} =\]
\[= \frac{104}{8} = 13\ дм^{2}.\]
\[Ответ:13\ дм^{2}.\]