\[\boxed{\mathbf{264.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[AB = a;\]
\[S_{\text{AMB}} = S_{\text{AMD}}.\]
\[Найти:\ \]
\[S_{бок}.\]
\[Решение.\]
\[AB = a;\]
\[AD = 2a.\]
\[Пирамида\ правильная:\]
\[S_{бок} = 6S_{\text{AMB}}.\]
\[S_{\text{AMB}} = \frac{1}{2}AB \cdot MK;\]
\[S_{\text{AMD}} = \frac{1}{2}MO \cdot AD:\]
\[\frac{1}{2}AB \cdot MK = \frac{1}{2}MO \cdot AD\]
\[\frac{1}{2}MO \cdot 2a = \frac{1}{2}a \cdot MK\]
\[MO = \frac{1}{2}\text{MK.}\]
\[⊿MOK - прямоугольный:\]
\[\angle MKO = 30{^\circ};\]
\[\cos{\angle MKO} = \frac{\text{KO}}{\text{MK}}\]
\[MK = \frac{\text{KO}}{\cos{30{^\circ}}}.\]
\[В\ треугольнике\ AKO:\]
\[AK = \frac{a}{2};\ \ AO = a;\ \ OK = \frac{a\sqrt{3}}{2};\]
\[MK = \frac{a\sqrt{3} \cdot 2}{2\sqrt{3}} = a.\]
\[S_{\text{AMB}} = \frac{1}{2}a \cdot a = \frac{a^{2}}{2};\]
\[S_{бок} = 6 \cdot \frac{a^{2}}{2} = 3a^{2}\text{.\ }\]
\[Ответ:3a^{2}.\]