\[\boxed{\mathbf{235.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\angle ABC = 90{^\circ};\]
\[\angle CAB = \varphi;\]
\[\mathrm{\Delta}A_{1}CB - сечение;\]
\[\angle ACBA_{1} = \theta.\]
\[Найти:\]
\[\frac{S_{бок}}{S_{сеч}}.\]
\[Решение.\]
\[1)\ C_{1}B_{1}\bot B_{1}A_{1};\ \ CB_{1}\bot B_{1}A_{1}:\]
\[\angle CB_{1}C_{1} = \theta - линейный\ угол\ \]
\[двугранного\ угла\ C_{1}A_{1}B_{1}\text{C.}\]
\[2)\ Из\ треугольника\ A_{1}B_{1}C_{1}:\]
\[A_{1}B_{1} = C_{1}B_{1} \cdot tg\ \varphi;\]
\[A_{1}C_{1} = \frac{C_{1}B_{1}}{\cos\varphi}\text{.\ }\]
\[3)\ Из\ треугольника\ CB_{1}C_{1}:\]
\[CC_{1} = C_{1}B_{1} \cdot tg\ \theta;\]
\[B_{1}C = \frac{C_{1}B_{1}}{\cos\theta}.\]
\[3)\ ⊿A_{1}B_{1}C - прямоугольный;\ \ \]
\[A_{1}B_{1}\bot B_{1}C_{1}:\]
\[\angle B_{1} = 90{^\circ}.\]
\[4)\ S_{A_{1}B_{1}C} = \frac{1}{2}A_{1}B_{1} \cdot B_{1}C =\]
\[= \frac{C_{1}B_{1} \cdot tg\varphi \cdot C_{1}B_{1}\ }{2\cos\theta} =\]
\[= \frac{C_{1}B_{1}^{2} \cdot tg\ \varphi}{2\cos\theta};\]
\[S_{бок} = S_{1} + S_{2} + S_{3}.\]
\[5)\ Все\ боковые\ грани\ являются\ \]
\[прямоугольниками:\]
\[S_{1} = S_{AA_{1}B_{1}B} = A_{1}B_{1} \cdot B_{1}B =\]
\[= C_{1}B_{1} \cdot tg\ \varphi \cdot C_{1}B_{1} \cdot tg\ \theta =\]
\[= \left( C_{1}B_{1} \right)^{2} \cdot tg\varphi \cdot tg\theta;\]
\[S_{2} = S_{B_{1}C_{1}\text{CB}} = B_{1}C_{1} \cdot CC_{1} =\]
\[= B_{1}C_{1} \cdot C_{1}B_{1} \cdot tg\theta =\]
\[= \left( C_{1}B_{1} \right)^{2} \cdot tg\theta;\]
\[S_{3} = S_{C_{1}\text{CA}A_{1}} = CC_{1} \cdot A_{1}C_{1} =\]
\[= C_{1}B_{1} \cdot tg\theta \cdot \frac{C_{1}B_{1}}{\cos\varphi} =\]
\[= \frac{C_{1}B_{1}^{2} \cdot tg\theta}{\cos\varphi};\]
\[S_{бок} =\]
\[= \left( C_{1}B_{1} \right)^{2} \cdot tg\theta \cdot \left( tg\varphi + 1 + \frac{1}{\cos\varphi} \right) =\]
\[= \left( C_{1}B_{1} \right)^{2} \cdot tg\theta \cdot \left( \frac{\sin\varphi + \cos\varphi + 1}{\cos\varphi} \right).\]