\[\boxed{\mathbf{193.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\text{ABCD}A_{1}B_{1}C_{1}D_{1} -\]
\[параллелепипед;\]
\[D_{1}B = d;\ \ AC = m;\ \ AB = n.\]
\[Найти:\]
\[расстояние\ между\]
\[\textbf{а)}\ A_{1}C_{1}\ и\ ABCD;\]
\[\textbf{б)}\ ABB_{1}\ и\ \text{DC}C_{1};\]
\[\textbf{в)}\ DD_{1}\ и\ \text{AC}C_{1}.\]
\[Решение.\]
\[\textbf{а)}\ Расстояние\ от\ A_{1}C_{1}\ до\ \]
\[плоскости\ ABC = прямой\ AA_{1}.\]
\[По\ теореме\ Пифагора:\]
\[D_{1}B = \sqrt{BD^{2} + DD_{1}^{2}} =\]
\[= \sqrt{AC^{2} + AA_{1}^{2}}\]
\[d = \sqrt{m^{2} + AA_{1}^{2}}\]
\[AA_{1} = \sqrt{d^{2} - m^{2}}.\]
\[\textbf{б)}\ Расстояние\ от\ плоскости\ \]
\[\text{AB}B_{1}\ до\ плоскости\ DCC_{1} = AD.\]
\[По\ теореме\ Пифагора:\]
\[AD = \sqrt{AC^{2} - AB^{2}};\ \ AB = DC;\ \ \]
\[AD = BC;\]
\[AD = \sqrt{m^{2} - n^{2}}.\]
\[\textbf{в)}\ D_{1}K_{1}\bot A_{1}C_{1};\ \ DK\bot AC:\]
\[расстояние\ от\ прямой\ DD_{1}\ \]
\[до\ плоскости\ \text{AC}C_{1} = DK.\]
\[В\ треугольнике\ AKD:\]
\[DK = AD \cdot \sin{\angle DAC};\ \]
\[\sin{\angle DAC} = \frac{\text{CD}}{\text{AC}} = \frac{n}{m};\]
\[AD = \sqrt{AC^{2} - AB^{2}} = \sqrt{m^{2} - n^{2}};\]
\[DK = \frac{\sqrt{m^{2} - n^{2}} \cdot n}{m}.\]