\[\boxed{\mathbf{152.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - квадрат;\]
\[BF\bot ABCD;\]
\[BF = 8\ дм;\]
\[AB = 4\ дм.\]
\[Доказать:\]
\[p(F,DA),\]
\[p(F,AB),\]
\[p(F,BC),\]
\[p(F,AC).\]
\[Доказательство.\]
\[1)\ Так\ как\ AF\bot DA,\ то\ \]
\[расстояние\ между\ \text{DA\ }и\ F = AF.\]
\[\mathrm{\Delta}ADF - прямоугольный:\]
\[p(F,AD) = AF =\]
\[= \sqrt{BF^{2} + AB^{2}} = \sqrt{64 + 16} =\]
\[= 4\sqrt{5}\ дм.\]
\[2)\ FC\bot CD:\ \]
\[p(F,AB) = p(F,BC) = 8\ дм.\]
\[3)\ BD\bot BF\ и\ BF\bot AC:\ \]
\[4)\ FO\bot AC:\]
\[p(F,AC) = FO.\]
\[5)\ DB = AB \bullet \sqrt{2} = 4\sqrt{2}\ дм.\]
\[BO = \frac{1}{2} \bullet DB = 4\sqrt{2}\ :2 =\]
\[= 2\sqrt{2}\ дм.\]
\[6)\ \mathrm{\Delta}FBO - прямоугольный:\]
\[FO = \sqrt{BO^{2} + BF^{2}} = \sqrt{8 + 64} =\]
\[= 6\sqrt{2}\ дм.\]
\[Ответ:p(F,DA) = 4\sqrt{5}\ дм;\]
\[\text{\ p}(F,AB) = p(F,BC) = 8\ дм;\]
\[p(F,AC) = 6\sqrt{2}\ дм.\]