\[\boxed{\mathbf{120.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - квадрат;\]
\[AB = a;\]
\[BD \cap AC = O;\]
\[OK\bot ABCD;\]
\[OK = b.\]
\[Найти:\]
\[KB,KA,KD,\ CK.\]
\[Решение.\]
\[1)\ ABCD - квадрат:\]
\[OB = OD = OC = AO\ \]
\[(по\ свойству\ диагоналей).\]
\[2)\ Рассмотрим\ \mathrm{\Delta}OAK,\mathrm{\Delta}OBK,\]
\[\mathrm{\Delta}OCK,\mathrm{\Delta}ODK:\]
\[\angle O = 90{^\circ}\ (так\ как\ KO\bot ABCD);\]
\[OB = OD = OC = AO;\]
\[KO - общая\ сторона.\]
\[Значит:\ \]
\[\mathrm{\Delta}OAK = \mathrm{\Delta}OBK = \mathrm{\Delta}OCK =\]
\[= \mathrm{\Delta}ODK\ (по\ двум\ катетам).\]
\[Отсюда:\]
\[KB = KA = KD = KC.\]
\[3)\ KB^{2} = OK^{2} + OB^{2};\]
\[KB^{2} = b^{2} + BO^{2};\]
\[BD = a\sqrt{2};\ \ \ \]
\[OB = \frac{1}{2}BD = \frac{a\sqrt{2}}{2};\]
\[BO^{2} = \frac{a^{2}}{2};\ \ \ \]
\[KB^{2} = b^{2} + \frac{a^{2}}{2};\ \ \ \]
\[KB = \sqrt{b^{2} + \frac{a^{2}}{2}}.\]
\[Ответ:\ \sqrt{b^{2} + \frac{a^{2}}{2}}.\]