\[\boxed{\mathbf{103.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[DABC - тетраэдр;\]
\[DM\ :\ MA = DN\ :\ NB =\]
\[= DP\ :\ PC;\]
\[S_{\text{ABC}} = 10\ см^{2};\]
\[DM\ :\ MA = 2\ :1.\]
\[Доказать:\]
\[MNP \parallel ABC.\]
\[Найти:\]
\[S_{\text{MNP}}.\]
\[Решение.\]
\[1)\frac{\text{DM}}{\text{MA}} = \frac{\text{DP}}{\text{PC}}:\ \]
\[\frac{DA = MA + MO}{DC = DP + PC\ \ };\]
\[\frac{\text{DM}}{AD - MP} = \frac{\text{DP}}{DC - DP}\ \]
\[или\]
\[\frac{AD - MD}{\text{MD}} = \frac{DC - DP}{\text{DP}}.\]
\[Отсюда:\ \]
\[\frac{\text{AD}}{\text{DM}} = \frac{\text{DC}}{\text{DP}}.\]
\[2)\ \mathrm{\Delta}CDA\sim\mathrm{\Delta}DPM:\]
\[\angle D - общий;\]
\[\frac{\text{AD}}{\text{DM}} = \frac{\text{DC}}{\text{DP}}.\]
\[Отсюда:\]
\[\angle DMP = \angle DAC;\ \]
\[\angle DPM = \angle DCA;\]
\[MP \parallel CA.\]
\[3)\ В\ треугольнике\ DCB:\ \]
\[NP \parallel CB.\]
\[4)\ MP \parallel CA\ и\ NP \parallel CN:\ \ \]
\[MNP \parallel ABC\ \]
\[(по\ двум\ пересекающимся\ прямым).\]
\[Что\ и\ требовалось\ доказать.\]
\[5)\ \mathrm{\Delta}MNP\sim\mathrm{\Delta}BCA - по\ двум\ \]
\[углам:\]
\[\frac{\text{MD}}{\text{AM}} = \frac{2}{1};\]
\[\frac{\text{MD}}{AD - MD} = \frac{2}{1};\]
\[\frac{AD - MD}{\text{MD}} = \frac{1}{2};\]
\[\frac{\text{AD}}{\text{DM}} - 1 = \frac{1}{2};\]
\[\frac{\text{AD}}{\text{DM}} = \frac{3}{2}.\]
\[6)\ \mathrm{\Delta}DAC\sim\mathrm{\Delta}MDP:\]
\[\frac{\text{AD}}{\text{MD}} = \frac{\text{AC}}{\text{MP}};\ \ \]
\[\frac{\text{AC}}{\text{MP}} = \frac{3}{2};\]
\[Площади\ подобных\ фигур\ \]
\[соотносятся,\ как\ квадрат\ \]
\[линейных\ размеров:\]
\[\frac{S_{\text{ABC}}}{S_{\text{MNP}}} = \left( \frac{\text{AC}}{\text{MP}} \right)^{2}.\]
\[7)\frac{10}{S_{\text{MNP}}} = \frac{9}{4}\]
\[S_{\text{MNP}} = 4\frac{4}{9}\ см^{2}.\]
\[Ответ:\ \ 4\frac{4}{9}\ см^{2}.\]