\[\boxed{\mathbf{867.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1;\]
\[y = \frac{2\sqrt{2}}{x}.\]
\[Найти:\]
\[расположение.\]
\[Решение.\]
\[Подставим\ уравнение\ \]
\[гиперболы\ в\ уравнение\ \]
\[эллипса\ и\ найдем\ корни:\]
\[\frac{x^{2}}{9} + \frac{\left( \frac{2\sqrt{2}}{x} \right)^{2}}{4} = 1\ \ \]
\[\frac{x^{2}}{9} + \frac{8}{4x^{2}} = 1\]
\[\frac{x^{2}}{9} + \frac{2}{x^{2}} = 1\ \]
\[x^{4} - 9x^{2} + 18 = 0\]
\[x_{1}^{2} = 3\ \ и\ \ x_{2}^{2} = 6.\]
\[Значит:\]
\[\ x_{1} = \pm \sqrt{3}\text{\ \ }и\ \ x_{2} = \pm \sqrt{6}.\]
\[y_{1} = \pm 2\sqrt{\frac{2}{3}};\ \ \text{\ \ }\]
\[y_{2} = \pm 2\sqrt{\frac{2}{6}} = \pm \frac{2}{\sqrt{3}}.\]
\[\mathbf{Ответ}:\ \ пересекаются\ в\ \]
\[четырех\ точках;\]
\[\left( - \sqrt{6}; - \frac{2}{\sqrt{3}} \right);\ \ \left( - \sqrt{3}; - 2\sqrt{\frac{2}{3}} \right);\ \]
\[\left( \sqrt{6};\frac{2}{\sqrt{3}} \right);\ \ \left( \sqrt{3};2\sqrt{\frac{2}{3}} \right).\]