\[\boxed{\mathbf{838.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[\mathrm{\Delta}ABC;\ \ \]
\[AA_{1},BB_{1},CC_{1} - биссектрисы;\ \ \]
\[O - точка\ пересечения\ \]
\[биссектрис;\]
\[\ BA = c;\ \ CA = b;\ \ BC = a.\]
\[Решение.\]
\[\textbf{а)}\ BO - биссектриса\ \angle\text{AB}A_{1}\ \]
\[(в\ \mathrm{\Delta}AA_{1}B):\]
\[\frac{\text{AO}}{\text{AB}} = \frac{OA_{1}}{BA_{1}}\]
\[\frac{\text{AO}}{OA_{1}} = \frac{\text{AB}}{BA_{1}}.\]
\[В\ \mathrm{\Delta}ABC:\ \ \ \]
\[\frac{A_{1}C}{\text{AC}} = \frac{BA_{1}}{\text{AB}}\text{\ \ \ }\ \]
\[\frac{BA_{1}}{A_{1}C} = \frac{\text{AB}}{\text{AC}} = \frac{c}{b}\text{\ \ }\]
\[\frac{BA_{1}}{a - BA_{1}} = \frac{c}{b}\]
\[BA_{1} = \frac{\text{ac}}{b + c}\text{.\ }\]
\[Таким\ образом:\ \ \]
\[\frac{\text{AO}}{OA_{1}} = \frac{\text{AB}}{BA_{1}} = c \bullet \frac{b + c}{\text{ac}} = \frac{b + c}{a}.\]
\[Аналогично:\ \]
\[\frac{\text{BO}}{OB_{1}} = \frac{\text{BC}}{B_{1}C} = \frac{a + c}{b};\ \]
\[\frac{\text{CO}}{OC_{1}} = \frac{\text{AC}}{AC_{1}} = \frac{a + b}{c}.\]
\[\textbf{б)}\frac{\text{AO}}{OA_{1}} = \frac{b + c}{a}:\ \]
\[\ \frac{\text{AO}}{AA_{1}} = \frac{\text{AO}}{AO + OA_{1}} =\]
\[= \frac{\text{AO}}{AO + \frac{a \bullet AO}{b + c}} = \frac{b + c}{a + b + c}.\]
\[Аналогично:\ \ \]
\[\frac{\text{BO}}{BB_{1}} = \frac{a + c}{a + b + c};\ \ \]
\[\frac{\text{CO}}{CC_{1}} = \frac{a + b}{a + b + c}.\]
\[Таким\ образом:\ \ \]
\[\frac{\text{AO}}{AA_{1}} + \frac{\text{BO}}{BB_{1}} + \frac{\text{CO}}{CC_{1}} =\]
\[= \frac{b + c + a + c + a + b}{a + b + c} = 2.\ \]
\[Что\ и\ требовалось\ доказать.\]
\[\frac{OA_{1}}{AA_{1}} = \frac{OA_{1}}{OA_{1} + OA} =\]
\[= \frac{OA_{1}}{OA_{1} + \frac{b + c}{a} \bullet OA_{1}} = \frac{a}{b + c + a}.\]
\[Аналогично:\ \]
\[\frac{OB_{1}}{BB_{1}} = \frac{OB_{1}}{OB_{1} + BO} = \frac{b}{a + b + c};\ \]
\[\frac{OC_{1}}{CC_{1}} = \frac{c}{a + b + c}.\]
\[Таким\ образом:\ \ \]
\[\frac{OB_{1}}{BB_{1}} + \frac{OC_{1}}{CC_{1}} + \frac{OA_{1}}{AA_{1}} =\]
\[= \frac{a + b + c}{a + b + c} = 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{в)}\ Пусть\ биссектриса\ AA_{1}\ \]
\[делится\ точкой\ \text{O\ }пополам:\]
\[\frac{\text{AO}}{OA_{1}} = \frac{b + c}{a} = 1\]
\[b + c = a.\]
\[Это\ противоречит\ свойству\ \]
\[сторон\ треугольника\ \ \]
\[b + c > a:\]
\[точка\ \text{O\ }не\ может\ делить\ \]
\[биссектрису\ AA_{1}\ пополам.\]
\[Аналогично\ для\ BB_{1}\ и\ CC_{1}.\]
\[\textbf{г)}\ Пусть\ биссектриса\ AA_{1}\ \]
\[делится\ точкой\ \text{O\ }в\ \]
\[отношении\ 2:1:\]
\[\frac{\text{AO}}{OA_{1}} = \frac{b + c}{a} = 2\]
\[a = \frac{b + c}{2}.\]
\[Что\ и\ требовалось\ доказать.\]