\[\boxed{\mathbf{834.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - трапеция;\]
\[AB \parallel DC;\]
\[AB > DC;\]
\[DC = a;\ \]
\[DK = b;\]
\[AK = d.\]
\[Найти:\]
\[S_{\text{ABCD}}.\]
\[Решение.\]
\[1)\ \ Отметим\ точки\ касания\ \]
\[окружности\ и\ сторон\ \]
\[трапеции:\]
\[E \in DC;\ \ M \in CB;\ \ F \in AB.\]
\[Как\ касательные\ из\ одной\ \]
\[точки:\]
\[DE = DK = b;\]
\[CM = CE;\]
\[BM = BF;\]
\[AK = AF = d.\ \]
\[Отсюда:\ \ \]
\[CM = EC = DC - DE = a - b;\]
\[2)\ Опустим\ высоту\ DH:\ \ \]
\[DH = 2R.\]
\[DH^{2} = AD^{2} - AH^{2} =\]
\[= (d + b)^{2} - (d - b)^{2}\]
\[4R^{2} =\]
\[= d^{2} + 2db + b^{2} - d^{2} + 2db - b^{2} =\]
\[= 4db\]
\[R = \sqrt{\text{db}}.\]
\[3)\ Опустим\ высоту\ CH_{1}:\]
\[CH_{1} = DH = 2R.\]
\[Пусть\ BM = BF = x:\]
\[\left( CH_{1} \right)^{2} = BC^{2} - \left( BH_{1} \right)^{2} =\]
\[= (x + a - b)^{2} - (x - a + b)^{2}\]
\[4)\ \ 4R^{2} = 4db = 4xa + 4xb\ \]
\[x = \frac{\text{bd}}{a - b}.\]
\[5)\ S_{\text{ABCD}} = \frac{1}{2}DH \bullet (DC + AB) =\]
\[= \frac{1}{2} \bullet 2R \bullet (d + x + a) =\]
\[= \left( d + \frac{\text{bd}}{a - b} + a \right)\sqrt{\text{bd}} =\]
\[= \frac{(d + a)(a - b) + bd}{a - b}\sqrt{\text{bd}} =\]
\[= \frac{da - db + a^{2} - ab + bd}{a - b}\sqrt{\text{bd}} =\]
\[= \frac{a^{2} + a(d - b)}{a - b}\sqrt{\text{bd}}.\]
\[\mathbf{Ответ}\mathbf{:\ }\frac{a^{2} + a(d - b)}{a - b}\sqrt{\text{bd}}.\]