\[\boxed{\mathbf{779.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[MA_{1}A_{2}A_{3}A_{4}A_{5}A_{6} - правильная\ \]
\[пирамида;\]
\[MH - высота;\]
\[H_{1} - середина\ MH;\]
\[сечение\ \parallel A_{2}A_{3}M;\]
\[S_{бок} = S.\]
\[Найти:\]
\[S_{сечения}.\]
\[Решение.\]
\[1)\ Сечение\ пересекает:\ \]
\[основание\ в\ точках\ A_{2}^{'}\ и\ A_{3}^{'}\ по\ \]
\[прямым\ \ A_{2}^{'}A_{3}^{'} \parallel A_{2}A_{3};\]
\[плоскость\ A_{1}A_{4}\ \ по\ прямым\ \]
\[A_{1}^{'}A_{4}^{'} \parallel A_{2}^{'}A_{3}^{'};\]
\[плоскость\ MA_{6}A_{5}\ по\ прямым\ \]
\[A_{5}^{'}A_{6}^{'} \parallel A_{3}^{'}A_{2}^{'}.\]
\[2)\ Опустим\ перпендикуляры\ \]
\[MK\bot A_{2}A_{3}:\]
\[PM\bot A_{6}A_{5}.\]
\[Тогда:\ \]
\[KP \cap A_{2}^{'}A_{3}^{'} = K_{1};\ \ \]
\[A_{6}^{'}A_{5}^{'} \cap MP = P_{1}.\]
\[Значит:\ \]
\[PK\bot A_{2}A_{3};\ \ \]
\[PK\bot A_{5}A_{6};\]
\[P_{1}K_{1} \parallel MK.\]
\[Отсюда:\]
\[P_{1}K_{1}\bot A_{2}^{'}A_{3}^{'}.\]
\[3)\ \ Пусть\ A_{1}A_{3} = a\ \ и\ \ MK = h:\]
\[\ S_{MA_{2}A_{3}} = \frac{\text{ah}}{2}.\]
\[4)\ Так\ как\ точка\ H_{1}\ середина\ \]
\[MH:\ \]
\[точки\ A_{2}^{'},A_{3}^{'},K_{1} - середины\ \]
\[A_{1}A_{2},\text{\ A}_{3}A_{4}\ и\ \text{MK.}\]
\[5)\ A_{1}A_{4} = 2a;\]
\[A_{2}^{'}A_{3}^{'} = \frac{a + 2a}{2} = \frac{3a}{2};\ \ \ \]
\[A_{1}^{'}A_{4}^{'} = \frac{2a}{2} = a;\ \ K_{1}H_{1} = \frac{h}{2};\]
\[S_{A_{2}^{'}A_{3}^{'}A_{4}^{'}A_{1}^{'}} = \frac{\frac{3}{2} + a}{2} \bullet \frac{h}{2} = \frac{5ha}{8}.\]
\[6)\ \mathrm{\Delta}K_{1}P_{1}P\sim\mathrm{\Delta}KPM:\]
\[\frac{K_{1}P_{1}}{\text{KM}} = \frac{PP_{1}}{\text{MP}} = \frac{P_{1}K}{\text{PK}}\ \]
\[\frac{K_{1}P_{1}}{h} = \frac{3}{4}\]
\[K_{1}P_{1} = \frac{3h}{4}.\]
\[H_{1}P_{1} = K_{1}P_{1} - K_{1}O_{1} = \frac{3h}{4} - \frac{h}{2} =\]
\[= \frac{h}{4};\]
\[PP_{1} = \frac{3MP}{4};\ \ \ \ \]
\[P_{1}M = \frac{\text{MP}}{4}.\]
\[7)\ \mathrm{\Delta}A_{6}^{'}A_{5}^{'}M\sim\mathrm{\Delta}A_{6}A_{5}M\ \ и\ \ \]
\[\mathrm{\Delta}A_{6}^{'}P_{!}M\sim\mathrm{\Delta}A_{6}PM:\]
\[\frac{A_{6}^{'}M}{A_{6}M} = \frac{P_{1}M}{\text{MP}};\]
\[\frac{A_{6}^{'}A_{5}^{'}}{a} = 4\]
\[A_{6}^{'}A_{5}^{'} = \frac{a}{4};\]
\[S_{A_{1}^{'}A_{6}^{'}A_{5}^{'}A_{4}^{'}} = \frac{a + \frac{a}{4}}{2} \bullet \frac{h}{4} = \frac{5ah}{32}.\]
\[8)\ Найдем\ площадь\ сечения:\]
\[S_{сеч} = \frac{5ah}{8} + \frac{5ah}{32} = \frac{25ah}{32},\ \]
\[где\ \frac{\text{ah}}{2} = S;\]
\[S_{сеч} = \frac{25S}{16}.\]
\[Ответ:\ \frac{25}{16}\text{S.}\]