\[\boxed{\mathbf{771.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[OABC - тетраэдр;\]
\[CBP - сечение\]
\[делит\ двугранн.\]
\[угол\ пополам.\]
\[Доказать:\]
\[\frac{S_{\text{ABC}}}{S_{\text{OCB}}} = \frac{\text{AP}}{\text{PO}}.\]
\[Доказательство.\]
\[1)\ Построим\ PH_{1}\bot ABC\ и\ \]
\[PH_{2}\bot OBC.\]
\[CBP\ делит\ двугранный\ угол\ \]
\[между\ плоскостями\ ABC\ и\ \text{DBC}\ \]
\[пополам:\ \]
\[PH_{1} = PH_{2}.\]
\[2)\frac{V_{\text{APBC}}}{V_{\text{OPBC}}} = \frac{\frac{1}{3}PH_{1} \bullet S_{\text{ABC}}}{\frac{1}{3}PH_{2} \bullet S_{\text{DBC}}} = \frac{S_{\text{ABC}}}{S_{\text{OBC}}};\]
\[\frac{V_{\text{APBC}}}{V_{\text{OPBC}}} = \frac{\frac{1}{3}h_{1} \bullet S_{\text{BPC}}}{\frac{1}{3}h_{2} \bullet S_{\text{BPC}}} = \frac{h_{1}}{h_{2}} = \frac{\text{AP}}{\text{PO}}\ \]
\[3)\ Таким\ образом:\ \ \]
\[\frac{S_{\text{ABC}}}{S_{\text{OBC}}} = \frac{\text{AP}}{\text{PO}}.\]
\[Что\ и\ требовалось\ доказать.\]