\[\boxed{\mathbf{770.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[OABC - тетраэдр;\]
\[O_{1} - проекция\ точки\ O\ на\ \]
\[плоскость\ ABC;\]
\[AOC = AOB = 90{^\circ}.\]
\[Доказать:\]
\[S_{\text{AOB}}^{2} = S_{\text{ABC}} \bullet S_{\text{AB}O_{1}}.\]
\[Доказательство.\]
\[1)\ O_{1} - проекция\ точки\ \text{O\ }на\ \]
\[поскость\ ABC:\]
\[OO_{1}\bot ABC;\]
\[OO_{1} - высота\ тетраэдра.\]
\[2)\ AO\bot ABC\ и\ OO_{1}\bot ABC:\]
\[\text{AO}O_{1}\bot ABC;\]
\[\text{AO}O_{1}\bot BCO.\]
\[Значит:\ \]
\[BC\bot AOO_{1};\]
\[BC\bot AO_{1}.\]
\[3)\ Аналогично - \ BO_{1}\bot AC:\]
\[4)\ CO_{1} \cap AB = H:\ \]
\[\angle CHO - линейный\ угол\ между\ \]
\[плоскостями\ \text{ABC\ }и\ \text{OAB.}\]
\[5)\ OO_{1}\bot HC\ \ и\ \ OH\bot AB:\]
\[S_{\text{AOB}} = \frac{1}{2}AB \bullet OH;\ \ \]
\[S_{\text{ABC}} = \frac{1}{2}AB \bullet CH =\]
\[= \frac{1}{2}AB \bullet \frac{\text{OH}}{\cos{\angle CHO}};\]
\[S_{\text{AB}O_{1}} = \frac{1}{2}AB \bullet O_{1}H =\]
\[= \frac{1}{2}AB \bullet OH \bullet \cos{\angle CHO}.\]
\[= \frac{1}{4} \bullet AB^{2} \bullet OH^{2}.\]
\[Таким\ образом:\]
\[S_{\text{AOB}}^{2} = S_{\text{ABC}} \bullet S_{\text{AB}O_{1}}.\]
\[Что\ и\ требовалось\ доказать.\]