Решебник по геометрии 10 класс Атанасян ФГОС 765

Авторы:
Год:2023
Тип:учебник

765

\[\boxed{\mathbf{765.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]

\[Дано:\]

\[MABCD - правильная\ \]

\[четырехугольная\ пирамида;\]

\[AB = 6\sqrt{2}\ см;\]

\[MA = 12\ см.\]

\[Решение.\]

\[\textbf{а)}\ Пирамида\ правильная,\ \]

\[значит,\ ее\ боковые\ грани\ равны:\ \ \]

\[\ S_{бок} = 4S_{\text{ABM}}.\]

\[В\ \mathrm{\Delta}\text{MA}H_{1} - прямоугольном:\]

\[MH_{1} = \sqrt{AM^{2} - AH_{1}^{2}} =\]

\[= \sqrt{12^{2} - \left( 3\sqrt{2} \right)^{2}} = \sqrt{126} =\]

\[= 3\sqrt{14}.\]

\[S_{\text{ABM}} = MH_{1} \bullet AH_{1} =\]

\[= 3\sqrt{2} \bullet 3\sqrt{14} = 9 \bullet 2 \bullet \sqrt{7} =\]

\[= 18\sqrt{7}\ см^{2}.\]

\[S_{бок} = 4 \bullet 18\sqrt{7} = 72\sqrt{7}\ см^{2}.\]

\[\textbf{б)}\ \ Построим\ MH\bot ABCD:\]

\[MH - высота\ \ пирамиды.\]

\[В\ \mathrm{\Delta}ACB - прямоугольном:\]

\[AC = \sqrt{AB^{2} + BC^{2}} =\]

\[= \sqrt{\left( 6\sqrt{2} \right)^{2} + \left( 6\sqrt{2} \right)^{2}} = 12\ см;\]

\[AH = \frac{1}{2}AC = 6\ см\ \]

\[(так\ как\ ABCD - квадрат).\]

\[В\ \mathrm{\Delta}AMH - прямоугольном:\]

\[MH = \sqrt{AM^{2} - AH^{2}} =\]

\[= \sqrt{12^{2} - 6^{2}} = \sqrt{108} = 6\sqrt{3}\ см;\]

\[V = \frac{1}{3}S_{\text{ABCD}} \bullet MH =\]

\[= \frac{1}{3} \bullet \left( 6\sqrt{2} \right)^{2} \bullet 6\sqrt{3} = 144\sqrt{3}\ см^{3}.\]

\[\textbf{в)}\ HH_{1} \in ABCD\ \ и\ \ MH_{1} \in ABM:\]

\[\angle\left( \text{ABM} \right)\left( \text{ABCD} \right) = \angle MH_{1}H = a.\]

\[В\ \mathrm{\Delta}MH_{1}H - прямоугольном:\]

\[HH_{1} = \sqrt{MH_{1}^{2} - MH^{2}} =\]

\[= \sqrt{126 - 108} = \sqrt{18} = 3\sqrt{2}\ см;\]

\[tg\ a = \frac{\text{MH}}{HH_{1}} = \frac{\sqrt{108}}{\sqrt{18}} = \sqrt{6},\ \]

\[отсюда\ a = arctg\ \sqrt{6}.\]

\[\textbf{г)}\ Искомый\ угол\ \angle MAH = a.\]

\[В\ \mathrm{\Delta}MAH - прямоугольном:\]

\[tg\ a = \frac{\text{MH}}{\text{AH}} = \frac{6\sqrt{3}}{6} = \sqrt{3}\]

\[a = arctg\ \sqrt{6} = 60{^\circ}.\]

\[\textbf{д)}\ \left( \overrightarrow{\text{AB}} + \overrightarrow{\text{AD}} \right) \bullet \overrightarrow{\text{AM}} = \overrightarrow{\text{AC}} \bullet \overrightarrow{\text{AM}} =\]

\[= AC \bullet AM \bullet \cos{\angle MAC} =\]

\[= 12 \bullet 12 \bullet \cos{60{^\circ}} = 144 \bullet \frac{1}{2} = 72.\]

\[\textbf{е)}\ MABCD - правильная\ \]

\[пирамида;\ \]

\[\text{O\ }(центр\ описанной\ сферы)\]

\[\in MH:\]

\[MO = AO = R - радиус\ \]

\[описанной\ сферы;\]

\[AO^{2} = OH^{2} + AH^{2}\]

\[AO^{2} = (MH - MO)^{2} + AH^{2}\]

\[R^{2} = \left( 6\sqrt{3} - R \right)^{2} + 36\]

\[R^{2} = 108 - 12\sqrt{3}R + R^{2} + 36\]

\[12\sqrt{3}R = 144\]

\[R = \frac{144}{12\sqrt{3}} = \frac{12}{\sqrt{3}}\ см.\]

\[S_{сферы} = 4\pi R^{2} = 4\pi \bullet \frac{144}{3} =\]

\[= 192\pi\ см^{2}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам